Casual association between plasma CoQ10 levels and stroke: a mendelian randomization study
DOI:
https://doi.org/10.71321/f3e84374Keywords:
plasma CoQ10, ischemic stroke, small vessel stroke, cerebrovascular disease, mendelian randomizationAbstract
Objective: The aim of this study is to investigate the causal relationship between plasma CoQ10 levels and stroke, as well as some cardiovascular diseases, using Mendelian randomization methods.
Methods: Causal links were investigated through two-sample Mendelian randomization (MR) analysis. We identified genetic variants that showed significant associations with plasma CoQ10 levels. The inverse variance weighted (IVW) method was employed to estimate the effects. Additionally, sensitivity analysis was used to assess heterogeneity or pleiotropy.
Results: Our MR analysis revealed that genetically predicted plasma CoQ10 levels was inversely associated with of any stroke (AS, OR = 0.803, 95% CI: 0.659–0.978, p =0.029), any ischemic stroke (AIS, OR = 0.792, 95% CI 0.651–0.964, p = 0.020) and small vessel stroke (SVS, OR = 0.512, 95% CI 0.294-0.892, p = 0.018). However, no associations were observed between genetically predicted plasma CoQ10 and large artery stroke (LAS), cardioembolic stroke (CES), intracranial hemorrhage (ICH), atrial fibrillation (AF), myocardial infarction (MI) or heart failure (HF).
Conclusion: Our MR analysis implies a protective effect between higher plasma CoQ10 levels and AS, AIS or SVS. The results and the underlying pathways or mechanisms between plasma CoQ10 levels and stroke needs further investigation.
References
[1] Testai L, Martelli A, Flori L, Cicero AFG, & Colletti A. (2021). Coenzyme Q(10): Clinical Applications beyond Cardiovascular Diseases. Nutrients, 13(5). https://doi.org/10.3390/nu13051697
[2] Ernster L, & Dallner G. (1995). Biochemical, physiological and medical aspects of ubiquinone function. Biochim Biophys Acta, 1271(1), 195-204. https://doi.org/10.1016/0925-4439(95)00028-3
[3] Bullón P, Román-Malo L, Marín-Aguilar F, Alvarez-Suarez JM, Giampieri F, Battino M, et al. (2015). Lipophilic antioxidants prevent lipopolysaccharide-induced mitochondrial dysfunction through mitochondrial biogenesis improvement. Pharmacol Res, 91, 1-8. https://doi.org/10.1016/j.phrs.2014.10.007
[4] Kernt M, Hirneiss C, Neubauer AS, Ulbig MW, & Kampik A. (2010). Coenzyme Q10 prevents human lens epithelial cells from light-induced apoptotic cell death by reducing oxidative stress and stabilizing BAX / Bcl-2 ratio. Acta Ophthalmol, 88(3), e78-86. https://doi.org/10.1111/j.1755-3768.2010.01875.x
[5] Navas P, Cascajo MV, Alcázar-Fabra M, Hernández-Camacho JD, Sánchez-Cuesta A, Rodríguez ABC, et al. (2021). Secondary CoQ(10) deficiency, bioenergetics unbalance in disease and aging. Biofactors, 47(4), 551-569. https://doi.org/10.1002/biof.1733
[6] Gasmi A, Bjørklund G, Mujawdiya PK, Semenova Y, Piscopo S, & Peana M. (2024). Coenzyme Q(10) in aging and disease. Crit Rev Food Sci Nutr, 64(12), 3907-3919. https://doi.org/10.1080/10408398.2022.2137724
[7] Langsjoen PH, & Langsjoen AM. (2003). The clinical use of HMG CoA-reductase inhibitors and the associated depletion of coenzyme Q10. A review of animal and human publications. Biofactors, 18(1-4), 101-111. https://doi.org/10.1002/biof.5520180212
[8] Ayer A, Macdonald P, & Stocker R. (2015). CoQ₁₀ Function and Role in Heart Failure and Ischemic Heart Disease. Annu Rev Nutr, 35, 175-213. https://doi.org/10.1146/annurev-nutr-071714-034258
[9] Ayers J, Cook J, Koenig RA, Sisson EM, & Dixon DL. (2018). Recent Developments in the Role of Coenzyme Q10 for Coronary Heart Disease: a Systematic Review. Curr Atheroscler Rep, 20(6), 29. https://doi.org/10.1007/s11883-018-0730-1
[10] Digiesi V, Cantini F, Oradei A, Bisi G, Guarino GC, Brocchi A, et al. (1994). Coenzyme Q10 in essential hypertension. Mol Aspects Med, 15 Suppl, s257-263. https://doi.org/10.1016/0098-2997(94)90036-1
[11] Gao HL, Yu XJ, Qi J, Yi QY, Jing WH, Sun WY, et al. (2016). Oral CoQ10 attenuates high salt-induced hypertension by restoring neurotransmitters and cytokines in the hypothalamic paraventricular nucleus. Sci Rep, 6, 30301. https://doi.org/10.1038/srep30301
[12] Mortensen SA, Rosenfeldt F, Kumar A, Dolliner P, Filipiak KJ, Pella D, et al. (2014). The effect of coenzyme Q10 on morbidity and mortality in chronic heart failure: results from Q-SYMBIO: a randomized double-blind trial. JACC Heart Fail, 2(6), 641-649. https://doi.org/10.1016/j.jchf.2014.06.008
[13] Baggio E, Gandini R, Plancher AC, Passeri M, & Carmosino G. (1994). Italian multicenter study on the safety and efficacy of coenzyme Q10 as adjunctive therapy in heart failure. CoQ10 Drug Surveillance Investigators. Mol Aspects Med, 15 Suppl, s287-294. https://doi.org/10.1016/0098-2997(94)90040-x
[14] Simani L, Ryan F, Hashemifard S, Hooshmandi E, Madahi M, Sahraei Z, et al. (2018). Serum Coenzyme Q10 Is Associated with Clinical Neurological Outcomes in Acute Stroke Patients. J Mol Neurosci, 66(1), 53-58. https://doi.org/10.1007/s12031-018-1115-1
[15] Ramezani M, Sahraei Z, Simani L, Heydari K, & Shahidi F. (2020). Coenzyme Q10 supplementation in acute ischemic stroke: Is it beneficial in short-term administration? Nutr Neurosci, 23(8), 640-645. https://doi.org/10.1080/1028415x.2018.1541269
[16] Lawlor DA, Harbord RM, Sterne JA, Timpson N, & Davey Smith G. (2008). Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med, 27(8), 1133-1163. https://doi.org/10.1002/sim.3034
[17] Degenhardt F, Niklowitz P, Szymczak S, Jacobs G, Lieb W, Menke T, et al. (2016). Genome-wide association study of serum coenzyme Q10 levels identifies susceptibility loci linked to neuronal diseases. Hum Mol Genet, 25(13), 2881-2891. https://doi.org/10.1093/hmg/ddw134
[18] Onur S, Niklowitz P, Fischer A, Jacobs G, Lieb W, Laudes M, et al. (2015). Determination of the coenzyme Q10 status in a large Caucasian study population. Biofactors, 41(4), 211-221. https://doi.org/10.1002/biof.1216
[19] Burgess S, & Thompson SG. (2011). Avoiding bias from weak instruments in Mendelian randomization studies. Int J Epidemiol, 40(3), 755-764. https://doi.org/10.1093/ije/dyr036
[20] Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, et al. (2018). The MR-Base platform supports systematic causal inference across the human phenome. Elife, 7. https://doi.org/10.7554/eLife.34408
[21] Malik R, Chauhan G, Traylor M, Sargurupremraj M, Okada Y, Mishra A, et al. (2018). Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat Genet, 50(4), 524-537. https://doi.org/10.1038/s41588-018-0058-3
[22] Kurki MI, Karjalainen J, Palta P, Sipilä TP, Kristiansson K, Donner KM, et al. (2023). FinnGen provides genetic insights from a well-phenotyped isolated population. Nature, 613(7944), 508-518. https://doi.org/10.1038/s41586-022-05473-8
[23] Nikpay M, Goel A, Won HH, Hall LM, Willenborg C, Kanoni S, et al. (2015). A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet, 47(10), 1121-1130. https://doi.org/10.1038/ng.3396
[24] Nielsen JB, Thorolfsdottir RB, Fritsche LG, Zhou W, Skov MW, Graham SE, et al. (2018). Biobank-driven genomic discovery yields new insight into atrial fibrillation biology. Nat Genet, 50(9), 1234-1239. https://doi.org/10.1038/s41588-018-0171-3
[25] Burgess S, Small DS, & Thompson SG. (2017). A review of instrumental variable estimators for Mendelian randomization. Stat Methods Med Res, 26(5), 2333-2355. https://doi.org/10.1177/0962280215597579
[26] Bowden J, Davey Smith G, & Burgess S. (2015). Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol, 44(2), 512-525. https://doi.org/10.1093/ije/dyv080
[27] Verbanck M, Chen CY, Neale B, & Do R. (2018). Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet, 50(5), 693-698. https://doi.org/10.1038/s41588-018-0099-7
[28] Hamilton SJ, Chew GT, & Watts GF. (2009). Coenzyme Q10 improves endothelial dysfunction in statin-treated type 2 diabetic patients. Diabetes Care, 32(5), 810-812. https://doi.org/10.2337/dc08-1736
[29] Tsai KL, Huang YH, Kao CL, Yang DM, Lee HC, Chou HY, et al. (2012). A novel mechanism of coenzyme Q10 protects against human endothelial cells from oxidative stress-induced injury by modulating NO-related pathways. J Nutr Biochem, 23(5), 458-468. https://doi.org/10.1016/j.jnutbio.2011.01.011
Type
Published
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon request.
Issue
Section
License
Copyright (c) 2025 Brain Conflux

This work is licensed under a Creative Commons Attribution 4.0 International License.