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Abstract

Background: Breast cancer is a major malignancy among women worldwide. Despite therapeutic advances, resistance to 5-fluorouracil (5-Fu) 
limits treatment efficacy. Lipid metabolism reprogramming may play a critical role in this resistance, but its mechanisms remain unclear.
Methods: We integrated single-cell sequencing data and multi-omics analysis to explore molecular characteristics associated with 5-Fu 
resistance. Differential gene expression analysis and Cox regression were used to construct a prognostic risk model, validated in independent 
cohorts.
Results: We developed a three-gene prognostic model (PDLIM4, SDC1, EMP1) with robust predictive performance. High-risk scores were 
associated with elevated lipid metabolism and distinct immune microenvironment features.
Conclusion: Lipid metabolism reprogramming contributes to 5-Fu resistance in breast cancer. Our model offers a tool for risk assessment and a 
potential basis for therapeutic strategies targeting lipid metabolism.
Keywords: Breast cancer; 5-Fluorouracil; Lipid metabolism; Prognostic model; Chemotherapy resistance; Single-cell sequencing

1 Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University.

† These authors contributed equally to this work.

* Corresponding Author.

Cell Conflux, 2025; 1: 39-56.

Introduction

Breast  cancer  is  a  major  g lobal  heal th  issue ,  wi th 
approximately 2.3 million new cases in 2022, making it the 
second most common cancer after lung cancer[1]. In China, 
it ranks second in incidence and fifth in mortality among 
female cancers[2]. Despite improved diagnostics leading to 
lower mortality rates, breast cancer incidence continues to 
rise, particularly among younger women, largely due to aging 
populations and lifestyle changes[3]. This underscores the 
need for deeper understanding of its underlying molecular 
mechanisms.
Although treatment methods have advanced, chemotherapy 
resistance remains a significant clinical challenge[4]. 5-Fu, an 
essential chemotherapy drug, inhibits thymidylate synthase to 
disrupt DNA synthesis[5]. However, resistance to 5-Fu severely 
limits its effectiveness and contributes substantially to cancer-
related mortality[6]. Thus, clarifying the mechanisms of 5-Fu 
resistance and identifying reliable biomarkers are crucial to 
improving patient prognosis.
Lipid metabol ism reprogramming is  a key dr iver  of 

chemotherapy resistance, particularly to 5-Fu treatment, 
where cancer cells adapt by accumulating lipid droplets under 
chemotherapeutic stress[7]. For example, 5-Fu-resistant 
colorectal cancer cells show elevated sphingolipids and 
reduced ceramides mediated by SMPD1[8]. Additionally, lipid 
metabolic alterations can influence cell membrane fluidity, 
drug uptake, oxidative stress, and apoptosis pathways, 
collectively forming a protective mechanism against 5-Fu 
treatment[9].Understanding these metabolic adaptations not 
only clarifies resistance mechanisms but also guides potential 
therapeutic strategies targeting lipid metabolism to enhance 
chemotherapy efficacy.
In this study, we integrated lipid metabolism-related genes 
from public databases to construct a prognostic model 
predicting 5-Fu resistance in breast cancer. Through differential 
expression analysis and Cox regression, we identified key 
prognostic genes and validated our risk-scoring model using 
ROC curve and Kaplan-Meier analyses in external cohorts. 
We further developed a nomogram to facilitate clinical use. 
Additionally, functional enrichment, protein-protein interaction 
analyses, and immune microenvironment comparisons were 
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conducted to clarify the biological mechanisms of identified 
genes. Our model provides a valuable tool for individualized 
prognosis and therapeutic decisions in breast cancer.

Materials and Methods

Data Sources and Collection
The GSE243526 single-cell RNA sequencing dataset was 
obtained from the Gene Expression Omnibus (GEO)[10] to 
identify 5-Fu-resistant and -sensitive tumor subpopulations. 
Lipid metabolism-related genes (n = 16,338) were retrieved 
from GeneCards[11]. Bulk RNA-seq data, along with clinical 
features and survival information of breast cancer (BRCA) 
patients, were downloaded from The Cancer Genome 
Atlas (TCGA) using the easyTCGA package and served as 
the primary dataset for model construction. The external 
validation cohort, GSE103091, was also retrieved from GEO 
and included expression profiles and follow-up data. Detailed 
sample information is presented in Table 1.

profiles, bulk transcriptomic data, and phenotypic responses 
such as drug sensitivity to identify phenotype-associated 
cell populations[12]. Specifically, the single-cell expression 
matrix of malignant epithelial cells, bulk RNA-seq data from 
the Genomics of Drug Sensitivity in Cancer (GDSC) database, 
and IC50 values for 5-Fu were jointly used. Cells identified as 
Scissor+ were labeled as resistant (epi_5-fu_Res), whereas 
Scissor− and unclassified cells were grouped as sensitive 
(epi_5-fu_Sen).
Differential gene expression between the resistant and 
sensitive groups was analyzed using the FindMarkers function 
in Seurat. Genes were retained if they showed |log2 fold 
change| > 0.25, were expressed in at least 25% of cells, had 
an intergroup expression proportion difference >10%, and a 
p-value < 0.05 by Wilcoxon rank-sum test.

DEGs Identification and Core Gene Set Screening
Differential expression analysis was performed on the TCGA-
BRCA dataset using the DESeq2 package, with significant 
genes defined as those with |log2FC| > 0.5 and p < 0.05. A 
multi-set intersection was then conducted among three 
gene sets: differentially expressed genes from TCGA-
BRCA, 5-Fu resistance–associated genes identified from 
single-cell analysis, and lipid metabolism–related genes. 
Overlapping genes were considered candidates related to 
both 5-Fu resistance and lipid metabolism. The intersections 
were visualized using Venn diagrams generated with the 
VennDiagram package.
Subsequently, functional enrichment analysis was conducted 
on the candidate genes using the clusterProfiler package. 
GO terms and KEGG pathways with p-values < 0.05 were 
considered significant, and the top 10 terms were visualized 
using ggplot2. Protein-protein interaction (PPI) analysis was 
conducted via the STRING database[13] with an interaction 
score cutoff of ≥ 0.4. The PPI network was visualized using 
Cytoscape, with node size and color intensity representing 
protein importance..

Development and Validation of a Prognostic Risk Signature
Univariate Cox regression was conducted using the survival 
package to identify genes significantly associated with 5-Fu 
resistance and lipid metabolism (p < 0.05). Genes meeting 
the proportional hazards (PH) assumption, assessed via 
Schoenfeld residuals (p > 0.05), were further included in 
multivariate Cox regression. PH assumption was re-evaluated 
in the multivariate model, and independent prognostic factors 
(p < 0.05) were visualized in forest plots using the forestploter 
package, showing hazard ratios (HR) and 95% confidence 
intervals.
A prognostic risk score was constructed using coefficients 
from multivariate Cox regression: Risk score=(−0.224×PD
LIM4)+(0.166×SDC1)+(0.204×EMP1).Patients in both the 
TCGA-BRCA training set and GSE103091 validation set were 
divided into high- and low-risk groups based on the median 
risk score. Overall survival (OS) differences between groups 
were assessed using Kaplan-Meier analysis and log-rank tests 
via the survminer package. The predictive accuracy of the 
signature at 1-, 3-, and 5-year intervals was evaluated using 
time-dependent ROC curves generated with the survivalROC 
package.

Database Information

GSE243526
Single-cell sequencing samples (n=16):

breast cancer tissues (n=12) and normal 
breast tissues (n=4)

TCGA-BRCA

RNA-bulk-Seq samples (n=1231):
tumor samples (n=1118) and normal samples 

(n=113)
Clinical characteristics of tumor samples 

(n=906)

GSE103091 Expression profiling microarray samples with 
survival information (n=107)

Table 1. Sample Information from TCGA-BRCA and GEO DatabasesA

Single-Cell RNA Sequencing Dataset Analysis
The GSE243526 single-cell RNA sequencing dataset was 
analyzed to identify gene expression differences associated 
with 5-Fu resistance. Quality control was conducted using the 
Seurat V5 framework. Cells were retained if they had between 
300 and 7000 detected genes, less than 20% mitochondrial 
gene expression, less than 3% hemoglobin gene expression, 
and sequencing depth above 1000. Batch effects were 
corrected using the Harmony algorithm.
Cell type annotation was based on cluster-specific marker 
genes. Malignant epithelial cells were identified by comparison 
with normal myoepithelial cells. Chromosomal copy number 
variations (CNVs) were evaluated using the inferCNV algorithm. 
CNV scores were calculated by normalizing gene-level signals 
to the [−1, 1] interval and summing the squared CNV values 
across all genes in each cell. Uniform Manifold Approximation 
and Projection (UMAP) was used for dimensionality reduction 
and visualization of cell subpopulations.
Following reclustering of malignant epithelial cells, the Scissor 
algorithm was applied to classify 5-Fu-resistant and -sensitive 
subpopulations. Scissor integrates single-cell expression 
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Gene Expression and Survival Risk Analysis
To evaluate the prognostic model and risk stratification 
effectiveness, several visualization methods were applied. Risk 
score distribution and survival status were visualized using the 
survminer and forestploter packages, allowing assessment of 
patient distribution and corresponding outcomes. Heatmaps of 
the key genes in the model were generated with the pheatmap 
package, highlighting differential expression patterns between 
high- and low-risk groups.
Additionally, principal component analysis (PCA) was 
performed for three-dimensional visualization. Samples were 
projected onto the space defined by the top three principal 
components to illustrate the separation and clustering of risk 
groups in multidimensional gene expression space.

Construction of a Nomogram Model
Patients with complete clinical and survival data were 
selected from the TCGA-BRCA cohort. Risk scores and clinical 
variables were analyzed using univariate Cox regression to 
identify factors significantly associated with overall survival 
(p < 0.05), and results were visualized in forest plots via the 
survminer and forestploter packages. Variables satisfying 
the proportional hazards (PH) assumption, assessed using 
Schoenfeld residuals, were included in a multivariate Cox 
regression model. PH assumptions were reassessed to ensure 
model stability, and independent prognostic factors were 
identified.
A nomogram was constructed using the rms and regplot 
packages based on these independent predictors. Model 
performance was evaluated using time-dependent ROC curves 
(via survivalROC) at 1-, 3-, and 5-year intervals, calibration plots, 
and decision curve analysis (DCA) with the ggDCA package, 
confirming its potential for clinical application in breast cancer 
prognosis.

Immune Correlation Analysis
To evaluate the relationship between risk stratification and the 
tumor immune microenvironment, immune infiltration profiles 
were compared between high- and low-risk groups in the 
TCGA-BRCA cohort. Using the IOBR package [14], the relative 
proportions of 22 immune cell types were quantified via the 
CIBERSORT algorithm. Immune cell compositions across 
samples were visualized using stacked bar plots to display 
overall differences between risk groups.
Spearman correlation analysis was performed to assess 
interactions among immune cells, and the results were 
visualized as correlation heatmaps using the corrplot package. 
Correlation strength (|r| ≥ 0.3) and significance levels (p < 
0.05, 0.01, 0.001) were annotated. Differences in immune cell 
abundance between risk groups were evaluated using the 
Wilcoxon rank-sum test, with results presented in box plots.
The associations between prognostic genes (PDLIM4, SDC1, 
and EMP1) and immune cell infiltration levels were further 
analyzed via Spearman correlation, and results were illustrated 
in heatmaps. Additionally, correlation coefficients between 
risk scores and immune cell proportions were calculated to 
identify immune cell types significantly associated with the 
risk score (|r| > 0.3, p < 0.05), suggesting potential biological 
links between the risk model and specific immune features.

Functional Enrichment and Pathway Activity Analysis
To explore molecular pathway activity across different risk 
groups, functional enrichment analysis was performed. 
Patients from the TCGA-BRCA cohort were stratified into 
high- and low-risk groups based on the prognostic risk score. 
Differentially expressed genes (DEGs) between the two groups 
were identified using DESeq2, with cutoffs of |log2FC| > 0.5 
and p < 0.05. Results were visualized as volcano plots using 
ggplot2 and ggrepel.
KEGG enrichment analysis was conducted separately for 
upregulated and downregulated DEGs using clusterProfiler 
and org.Hs.eg.db. The top 10 enriched pathways and their 
associated genes were visualized using the GOChord function 
from the GOplot package.
Additionally, Gene Set Enrichment Analysis (GSEA) was 
performed based on ranked genes calculated as −log10(p-
value) × sign(log2FC). The MsigDB KEGG gene set (c2.cp.kegg.
v7.4.symbols.gmt) was used for reference. GSEA results were 
visualized via the gseaNb function in the GseaVis package, 
and significantly enriched pathways in the high-risk group were 
defined as those with NES > 1, p < 0.05, and FDR < 0.25.

Protein Expression Validation and Functional Network 
Analysis
To validate the expression of prognostic genes at the protein 
level, immunohistochemical data were obtained from the 
Human Protein Atlas (HPA) database. Protein expression 
patterns in normal and breast cancer tissues were compared 
to evaluate their potential roles in tumor development. 
Functional network analysis was performed using GeneMANIA 
[15] to investigate biological associations of the prognostic 
genes. This analysis incorporated multiple data types, 
including physical interactions, co-expression, co-localization, 
pathway co-occurrence, and protein domain similarity, to 
construct a functional association network. Key functional 
partners were identified, along with their involvement in 
major biological processes, molecular functions, and cellular 
components..

Statistical Analysis
All statistical analyses and visualizations were performed 
using R (version 4.4.0) and RStudio (version 2024.12.1+563), 
along with relevant online databases. A two-sided p-value 
< 0.05 was considered statistically significant. Significance 
levels were indicated as follows: p < 0.05 (*), p < 0.01 (**), p < 
0.001 (***), and p < 0.0001 (****).

Results

Identification of Differential Genes Associated with 5-Fu 
Resistance through Single-Cell Data Analysis
Differential gene expression associated with 5-FU resistance 
was investigated using the GSE243526 single-cell RNA 
sequencing dataset. After rigorous quality control, 123,901 
high-quality cells were retained for analysis (Figure 1A). Batch 
effects were corrected through multi-sample integration, 
confirmed by UMAP visualization (Figure 1B).
Cells were clustered using a resolution of 0.2, resulting in 15 
initial clusters (Figure 1C). Based on marker gene expression, 
10 distinct cell types were annotated (Figure 1D–E), including B 
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Figure 1. Preliminary single-cell transcriptomic analysis of 5-FU resistance mechanisms in breast cancer. 
(A) Quality control workflow diagram showing 123,901 high-quality cells retained after multi-parameter filtration. (B) UMAP dimensionality 
reduction plot after multi-sample integration demonstrating batch effect elimination. (C) UMAP visualization of 15 initial cell clusters obtained 
using optimized clustering parameters (resolution=0.2). (D) UMAP plot of 10 annotated cell subpopulations. (E) Heatmap of cell type-specific 
marker gene expression.

A
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cells, T cells, macrophages, mast cells, fibroblasts, endothelial 
cells, pericytes, luminal epithelial cells, myoepithelial cells, and 
cancer cells. Cancer cells were identified via chromosomal 
copy number variation (CNV) analysis using inferCNV.
Subsequent  ana lys is  o f  ep i the l ia l  subpopu la t ions 
(Supplementary Figure 1A–F) refined luminal epithelial 
clusters into 16 subgroups. Subgroups 0, 2, 7, 9, and 15 
exhibited CNV profiles similar to normal epithelial tissue and 
were classified as normal luminal cells. Remaining clusters 
were deemed malignant, while mixed subgroups (5 and 13) 
were excluded to improve clustering accuracy.
Reclustering of cancer cells revealed 11 subgroups (Figure 
2A–B). Using the Scissor algorithm, cells were classified 
into 5-FU-resistant and -sensitive subpopulations based on 
similarity to bulk expression and drug sensitivity data (Figure 
2C). Their spatial distribution was visualized via UMAP (Figure 
2D). Differential expression analysis between resistant and 
sensitive clusters identified 84 5-FU resistance–associated 
genes (Figure 2E).

Identification of Candidate Genes Linking 5-FU Resistance to 
Lipid Metabolism
Differential expression analysis of the TCGA-BRCA dataset 
identified 5,985 upregulated and 3,591 downregulated genes 
in breast cancer samples. These results were visualized 
using a volcano plot (Figure 3A) and a heatmap of the top 10 
upregulated and downregulated genes (Figure 3B).
A multi-set intersection analysis was performed among three 
gene sets: differentially expressed genes from TCGA-BRCA, 
5-FU resistance–associated genes identified from single-cell 
analysis, and lipid metabolism–related genes from GeneCards. 
This integrative approach identified 42 candidate genes 
associated with both 5-FU resistance and lipid metabolism 
(Figure 3C).
Protein-protein interaction (PPI) analysis of these 42 genes 
was conducted using the STRING database (Figure 3D). The 
resulting network revealed HSPA1A and FOS as central hub 
proteins, interacting with multiple partners, suggesting their 
key regulatory roles in lipid metabolism and 5-FU resistance.
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analyses were then performed. 
GO analysis revealed 23 enriched pathways, with the top 
10 involving processes such as response to metal ions, 
protein folding, and cAMP signaling (Figure 3E). KEGG 
analysis identified 12 pathways, with the top 10 enriched in 
estrogen signaling, proteoglycans in cancer, and cell adhesion 
molecules (Figure 3F).

Identification of Prognostic Genes and Construction of Risk 
Prediction Model
Univariate Cox regression analysis identified seven prognostic 
gene candidates (Figure 4A). Following proportional hazards 
(PH) assumption testing, HSPB8 and EFHD2 were excluded 
due to non-compliance (p < 0.05; Figure 4B). Multivariate Cox 
regression on the remaining five genes identified PDLIM4, 
SDC1, and EMP1 as independent prognostic factors (Figure 
4C), all of which met the PH assumption (Figure 4D).
A prognostic risk model was developed using the expression 
levels and regression coefficients of these three genes. Risk 
scores were calculated for each patient, and individuals 
were stratified into high- and low-risk groups based on the 

median score. Receiver operating characteristic (ROC) curve 
analysis showed good predictive performance in the TCGA-
BRCA training set, with AUCs of 0.631, 0.662, and 0.641 at 
1, 3, and 5 years, respectively (Figure 4E–F). In the external 
validation cohort GSE103091, AUCs were 0.822, 0.65, and 
0.69 at corresponding time points. These results demonstrate 
the model’s stable discriminative power across short- and 
long-term survival. Kaplan–Meier survival analysis confirmed 
significantly shorter overall survival in the high-risk group 
compared to the low-risk group in both the training (p = 
0.00027) and validation (p = 0.047) sets (Figure 4G–H), as 
determined by log-rank test.
Further visualization of the model included risk score 
distribution, survival status, gene expression heatmaps, 
and principal component analysis (PCA). Risk score plots 
(Figure 5A–B) showed a gradient distribution from low- to 
high-risk. Survival scatter plots (Figure 5C–D) indicated a 
higher concentration of death events in the high-risk group. 
Heatmaps (Figure 5E–F) revealed distinct expression patterns 
of the three prognostic genes. Three-dimensional PCA (Figure 
5G–H) confirmed clear separation between high- and low-
risk groups, validating the model’s discriminative capacity and 
generalizability across independent datasets.

Construction and Validation of a Nomogram Model
To evaluate the risk score as an independent prognostic 
factor in breast cancer, univariate and multivariate Cox 
regression analyses were performed using the complete 
TCGA cohort. Univariate analysis (Figure 6A) identified T 
stage, N stage, M stage, age, pathological stage, and risk 
score as significant predictors of overall survival (p < 0.001), 
while molecular subtype was not statistically significant (p = 
0.063). Proportional hazards (PH) assumption testing (Figure 
6B) indicated that T stage and pathological stage violated 
the assumption (p < 0.05). Multivariate Cox analysis (Figure 
6C) confirmed that N stage, M stage, age, and risk score 
were independent prognostic factors, all meeting the PH 
assumption (Figure 6D).
A Nomogram was constructed incorporating age, N stage, M 
stage, and risk score to predict 1-, 3-, and 5-year overall survival 
(Figure 6E). Calibration plots demonstrated good agreement 
between predicted and observed survival outcomes (Figure 
6F). Time-dependent ROC curves showed AUCs of 0.797, 
0.757, and 0.766 for 1-, 3-, and 5-year survival, respectively, 
indicating favorable discrimination performance (Figure 
6G). Decision curve analysis (Figure 6H) confirmed that the 
Nomogram achieved stable net clinical benefit across all time 
points, outperforming treat-all or treat-none strategies within 
clinically relevant risk thresholds.
In summary,  the Nomogram model exhibited robust 
performance in both short-term and long-term survival 
prediction, providing a valuable tool for individualized 
prognostic assessment in breast cancer patients.

Molecular Pathway Signatures in Different Risk Groups
To explore molecular differences between risk groups, 
differential expression and pathway enrichment analyses were 
performed. A total of 407 genes were significantly upregulated 
and 133 downregulated in the high-risk group. The top 20 
differentially expressed genes were visualized in a volcano plot 
(Figure 7A).
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Figure 2. Identification and characterization of 5-FU resistant cancer cell subpopulations
(A) Integration status of samples after cancer cell reclustering. (B) Distribution characteristics of 11 cancer cell subgroups. (C) Correlation 
assessment between individual cancer cells and 5-FU resistance using the Scissor algorithm. (D) Spatial distribution patterns of 5-FU resistant 
and sensitive cell clusters. (E) Volcano plot depicting 84 differentially expressed genes significantly associated with 5-FU resistance.

A
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Figure 3. Identification of Candidate Genes Linking 5-FU Resistance to Lipid Metabolism
(A) Volcano plot illustrating differential gene expression in the TCGA-BRCA dataset. (B) Heatmap displaying the TOP10 upregulated and TOP10 
downregulated genes from the TCGA-BRCA dataset. (C) Venn diagram of intersection analysis between TCGA-BRCA differentially expressed 
genes, 5-FU resistance-associated genes from single-cell analysis, and Genecard lipid metabolism-related genes. (D) Protein-protein interaction 
network of the 42 candidate genes constructed using the STRING database (E) TOP10 GO enrichment pathways of the 42 candidate genes. (F) 
TOP10 KEGG enrichment pathways of the 42 candidate genes

A
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Figure 4. Development and Validation of a Three-Gene Prognostic Model. 
(A) Forest plot of univariate Cox regression analysis identifying prognostic gene markers. (B) Proportional hazards assumption testing results 
for candidate genes. (C) Forest plot of multivariate Cox regression analysis identifying independent prognostic genes. (D) Proportional hazards 
assumption verification for the final selected genes. (E) Time-dependent ROC curves for the risk prediction model in the TCGA-BRCA training 
cohort. (F) Time-dependent ROC curves for the risk prediction model in the GSE103091 validation cohort. (G) Kaplan-Meier survival curves 
comparing high-risk and low-risk groups in the TCGA-BRCA training cohort. (H) Kaplan-Meier survival curves comparing high-risk and low-risk 
groups in the GSE103091 validation cohort.

A
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Figure 5. Risk Score Analysis and Model Performance Visualization
(A) Risk score distribution plot for patients in the TCGA-BRCA training cohort. (B) Risk score distribution plot for patients in the GSE103091 
validation cohort. (C) Survival status scatter plot for patients in the TCGA-BRCA training cohort. (D) Survival status scatter plot for patients 
in the GSE103091 validation cohort. (E) Heatmap showing expression patterns of the three key genes in the TCGA-BRCA training cohort. (F) 
Heatmap showing expression patterns of the three key genes in the GSE103091 validation cohort. (G) Three-dimensional principal component 
analysis (PCA) of risk groups in the TCGA-BRCA training cohort. (H) Three-dimensional principal component analysis (PCA) of risk groups in the 
GSE103091 validation cohort.

A
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Figure 6. Development of a Nomogram Model
(A) Forest plot of univariate Cox regression analysis for clinicopathological characteristics and risk score. (B) Proportional hazards assumption 
testing results for clinical variables. (C) Forest plot of multivariate Cox regression analysis identifying independent prognostic factors. (D) 
Proportional hazards assumption verification for the final selected variables. (E) Nomogram integrating age, N stage, M stage, and risk score 
for predicting 1-year, 3-year, and 5-year overall survival. (F) Calibration curves for the Nomogram model at 1-year, 3-year, and 5-year time points. 
(G) Time-dependent ROC curves for the Nomogram model showing discriminative ability. (H) Decision curve analysis demonstrating the clinical 
utility of the Nomogram model.

A
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Figure 7. Molecular Pathway Signatures in Different Risk Groups
(A) Volcano plot showing differentially expressed genes between high-risk and low-risk groups, with the top 20 most significant genes 
highlighted. (B) KEGG pathway enrichment analysis of upregulated genes in the high-risk group. (C) KEGG pathway enrichment analysis of 
downregulated genes in the high-risk group. (D) GSEA showing activated metabolic pathways in the high-risk group.

A
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KEGG pathway enrichment analysis revealed that upregulated 
genes in the high-risk group were primarily involved in 
neuroactive ligand–receptor interaction, bile secretion, and 
cytochrome P450–mediated drug metabolism (Figure 7B). In 
contrast, downregulated genes were enriched in neuroactive 
ligand–receptor interaction and cytokine–cytokine receptor 
interaction pathways (Figure 7C).
GSEA further showed significant activation of amino acid 
metabolism pathways, including tyrosine, histidine, and 
phenylalanine metabolism, in the high-risk group (Figure 
7D). These findings suggest that metabolic pathway 
reprogramming, particularly involving amino acid metabolism, 
may contribute to the aggressive phenotype and poorer 
prognosis observed in high-risk breast cancer patients.

Association Between Risk Score and Tumor Immune 
Microenvironment
The relationship between the risk score and tumor immune 
microenvironment was analyzed. Immune cell infiltration was 
quantified using the CIBERSORT, revealing the proportions of 
22 immune cell types (Figure 8A). Comparative analysis (Figure 
8B) showed that resting dendritic cells and M1 macrophages 
were significantly more abundant in the low-risk group (p < 
0.05).
Immune cell interaction analysis (Figure 8C) revealed a strong 
positive correlation between activated CD8+ T cells and CD4+ 
memory activated T cells (r = 0.439, p < 0.001), while M0 
macrophages exhibited significant negative correlations with 
CD4+ memory resting T cells (r = −0.404) an d CD8+ T cells (r = 
−0.368), suggesting a dynamic balance between pro- and anti-
tumor immune components.
Correlation analysis between prognostic genes and immune 
cell types (Figure 8D) showed that SDC1 was positively 
correlated with M0 macrophages and neutrophils; PDLIM4 
was negatively correlated with CD4+ memory activated T cells 
and M2 macrophages; and EMP1 was positively correlated 
with CD4+ memory resting T cells but negatively correlated 
with regulatory T cells. Although statistically significant, the 
correlation coefficients were all below 0.3, indicating modest 
but potentially biologically relevant immune associations of 
the prognostic genes.

Protein Expression Validation and Functional Network 
Analysis
Immunohistochemistry data from the Human Protein Atlas 
(HPA) were used to evaluate the protein-level expression 
of prognostic genes in breast cancer. As shown in Figure 
9A, PDLIM4 exhibited higher expression in tumor tissues 
compared to normal tissues, whereas SDC1 showed a notable 
downregulation. No immunohistochemical data were available 
for EMP1 in the HPA database.
A functional interaction network was constructed using 
GeneMANIA (Figure 9B), revealing that the three prognostic 
genes were functionally connected with proteins involved in 
cell adhesion (e.g., SDCBP, CD9), immune regulation (e.g., 
ANXA1, CXCL2), and signal transduction (e.g., TRIP6, NQO1). 
These interactions were supported by multiple mechanisms, 
including physical binding, co-expression, and pathway co-
occurrence. This network suggests potential roles for the 
prognostic genes in breast cancer progression through diverse 
molecular pathways.

Discussion

Chemotherapy resistance remains a major obstacle in 
the effective management of breast cancer, particularly in 
aggressive subtypes such as triple-negative breast cancer 
(TNBC)[16]. This resistance is driven by multifactorial 
mechanisms, including genomic instability, epigenetic 
alterations, metabolic reprogramming, and changes in the 
tumor microenvironment [17]. Immune-related signaling 
pathways have also been implicated in chemoresistance, with 
previous studies highlighting the roles of genes such as PRC1, 
GGTLC1, and IRS1[18]. Moreover, chemoresistance has been 
associated with shortened patient survival and remodeling of 
the immune landscape, which together contribute to reduced 
treatment efficacy [19]. Given these challenges, elucidating 
the molecular mechanisms underlying 5-FU resistance 
and identifying robust predictive biomarkers are critical for 
advancing precision medicine in breast cancer.
Recent  s tud ies  have  h igh l ighted  l ip id  metabo l ism 
reprogramming as a key contributor to chemotherapy 
resistance. Breast cancer cells exhibit unique lipid metabolic 
profiles influenced by their tissue microenvironment and 
endocrine signaling [20]. For instance, estrogen receptor–
positive breast cancer promotes fatty acid synthesis to 
modulate membrane fluidity [21], whereas triple-negative 
breast cancer relies on lipophagy and lipid droplet dynamics 
to maintain energy homeostasis under stress [7]. These 
distinct metabolic adaptations underscore the pivotal role of 
lipid metabolism in shaping chemotherapeutic responses and 
influencing patient prognosis.
In this study, a lipid metabolism–related prognostic model for 
5-FU resistance in breast cancer was developed by integrating 
single-cell transcriptomic and bulk multi-omics data. A total 
of 42 candidate genes associated with both 5-FU resistance 
and lipid metabolism were identified through differential 
expression analysis combined with the Scissor algorithm and 
TCGA-BRCA dataset. Based on Cox regression analysis, a 
three-gene risk signature comprising PDLIM4, SDC1, and EMP1 
was constructed and validated in independent cohorts. The 
risk score model effectively stratified patients by prognosis, 
with high-risk patients exhibiting significantly shorter overall 
survival. Importantly, the risk score remained an independent 
prognostic factor after adjustment for clinicopathological 
variables. A nomogram incorporating the risk score and 
clinical features was also established, demonstrating 
good predictive performance and clinical applicability. This 
integrative approach provides a novel framework for predicting 
chemoresistance and offers a potentially valuable tool for 
individualized treatment decision-making in breast cancer.
The three genes identified in our risk model—PDLIM4, SDC1, 
and EMP1—have all been previously implicated in tumor 
progression and therapy resistance. 
PDLIM4, a member of the PDZ and LIM domain protein 
family, regulates cytoskeletal organization and signal 
transduction[22]. Its aberrant methylation has been associated 
with drug resistance in multiple malignancies. In chronic 
myeloid leukemia, hypermethylation of PDLIM4 correlates with 
imatinib resistance and disease progression[23].In prostate 
cancer, it has been reported as a prognostic marker linked to 
aberrant promoter methylation [24]. In breast cancer, PDLIM4 
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Figure 8. Association Between Risk Score and Tumor Immune Microenvironment
(A) Stacked bar chart showing the proportions of 22 immune cell subpopulations across risk groups based on CIBERSORT analysis. (B) Box 
plots showing differential immune cell infiltration between high-risk and low-risk groups. (C) Correlation heatmap depicting interactions between 
immune cell populations in the tumor microenvironment. (D) Correlation analysis between the three prognostic marker genes (SDC1, PDLIM4, 
EMP1) and immune cell populations.
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Figure 9. Protein Expression Validation and Functional Network Analysis
(A) Immunohistochemical staining images from the Human Protein Atlas (HPA) database showing differential expression of PDLIM4 and SDC1 
proteins between breast cancer and normal breast tissues. (B) Functional interaction network constructed using GeneMANIA showing the 
relationships between the three prognostic genes (SDC1, PDLIM4, EMP1) and their interacting partners, with different connection types indicated.
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overexpression enhances migratory and metastatic capacity, 
potentially acting as an oncogene independent of Src signaling 
[25]. These findings align with our results, where PDLIM4 was 
upregulated in high-risk patients and associated with poor 
prognosis.
SDC1 encodes a transmembrane heparan sulfate proteoglycan 
involved in cell proliferation, adhesion, migration, and 
angiogenesis [26]. Immunohistochemical data from the 
Human Protein Atlas confirmed reduced SDC1 expression in 
breast cancer tissues in our study. Interestingly, SDC1 exhibits 
context-dependent functions: in ER-positive breast cancer, it 
promotes cell migration and correlates with poor prognosis [27] 
; in pancreatic cancer, it facilitates epithelial–mesenchymal 
transition (EMT) and tumor progression[28]. In contrast, 
SDC1 downregulation has been observed in gastric[29] and 
colorectal cancers[30], suggesting tumor-type specific roles. 
Our data support a tumor-suppressive role of SDC1 in breast 
cancer, consistent with its lower expression in the high-risk 
group.
EMP1 encodes an epithelial membrane protein associated 
with inflammation and epithelial pathologies[31]. It has been 
shown to promote triple-negative breast cancer progression by 
enhancing IL-6 secretion via NF-κB signaling, which stimulates 
tumor-associated fibroblast proliferation and metastatic 
spread[32]. The inclusion of EMP1 in our prognostic model 
and its correlation with poor survival underscore its potential 
as a therapeutic target in aggressive breast cancer subtypes.
Pathway enrichment analysis revealed that high-risk patients 
exhibited activation of bile secretion and cytochrome 
P450–mediated drug metabolism pathways, both of which 
are involved in lipid processing and drug detoxification 
[33,34]. These findings are consistent with previous studies 
suggesting that altered lipid metabolism contributes to 
chemoresistance through enhanced metabolic flexibility and 
reduced drug efficacy[35]. Additionally, enrichment of amino 
acid metabolism pathways in the high-risk group indicates that 
metabolic reprogramming may provide survival advantages to 
tumor cells under chemotherapeutic stress, further reinforcing 
the role of metabolic adaptation in treatment resistance.
Our analysis revealed significant associations between 
the risk score and components of the tumor immune 
microenvironment. CIBERSORT analysis demonstrated that 
resting dendritic cells and M1 macrophages were significantly 
enriched in the low-risk group. Dendritic cells play a key role 
in antigen presentation and activation of immune effector 
cells, thereby contributing to tumor immune surveillance 
[36]. However, their function is often suppressed within 
the tumor microenvironment, a state that can be reversed 
through immune-stimulatory interventions such as CpG 
oligodeoxynucleotide treatment[37]. M1 macrophages support 
anti-tumor immunity by promoting Th1-type responses and 
secreting pro-inflammatory cytokines such as IL-12 and 
TNF-α[38]. Their enrichment in the low-risk group may indicate 
a more active immune surveillance environment, which could 
contribute to the improved prognosis observed in these 
patients.
Although the correlat ions between prognostic gene 
expression and immune cell infiltration were modest, they 
were statistically significant. These findings suggest that the 
identified genes may influence the tumor immune landscape 
through complex regulatory networks involving cytokine 

signaling, cell adhesion, and metabolic pathways. Further 
investigations using single-cell sequencing and spatial 
transcriptomics are warranted to delineate these interactions 
and guide the development of precise immunotherapeutic 
strategies.
Th is  s tudy  has  severa l  l imi ta t ions  that  shou ld  be 
acknowledged. First, it is a retrospective analysis based on 
publicly available datasets, which may introduce selection bias 
and limit the generalizability of the findings to broader patient 
populations. The heterogeneity in sequencing platforms, 
sample processing protocols, and clinical annotations 
across datasets could influence the robustness of the 
integrated analysis. Second, the predictive model has not 
yet been validated in prospective clinical trials. Experimental 
validation is essential to confirm the biological roles of 
the three identified prognostic genes—PDLIM4, SDC1, and 
EMP1—in mediating 5-FU resistance and lipid metabolism. 
Future studies should incorporate in vitro and in vivo assays 
to elucidate the functional relevance of these genes. Third, 
the immune microenvironment analysis in this study was 
primarily based on computational inference using CIBERSORT. 
While useful, such approaches rely on transcriptomic data 
and may not fully capture spatial or functional heterogeneity. 
Experimental validation, such as immunohistochemistry, 
multiplex immunofluorescence, or spatial transcriptomics, is 
needed to corroborate these findings. Lastly, the prognostic 
model was developed based on overall survival as the sole 
clinical endpoint. Future research should evaluate additional 
endpoints such as progression-free survival, treatment 
response, and recurrence risk, and test the model's predictive 
power across different breast cancer subtypes and treatment 
regimens.Together, these limitations highlight the need for 
prospective, multi-dimensional validation to ensure the clinical 
applicability and translational potential of the proposed risk 
model.

Conclusion

This study highlights the critical role of lipid metabolism in 
breast cancer resistance to 5-FU. We constructed a prognostic 
model based on PDLIM4, SDC1, and EMP1, which effectively 
stratified patient outcomes and demonstrated independent 
prognostic value. These findings offer a clinically relevant tool 
for personalized treatment and suggest that targeting lipid 
metabolism may enhance therapeutic efficacy in resistant 
breast cancer.
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