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Abstract

Background: Skin cutaneous melanoma (SKCM) is a highly aggressive cancer with significant mortality, necessitating novel prognostic markers 
and therapeutic strategies. Centrosome amplification (CA), a hallmark of genomic instability, contributes to cancer progression, but its role in 
SKCM remains unclear.
Methods: Transcriptomic data from SKCM patients were analyzed to identify differentially expressed genes (DEGs) between SKCM and normal 
tissues. Centrosome amplification-related genes (CA-RGs) were selected based on centrosomal functions. Prognostic CA-RGs were identified 
using Cox regression and LASSO analyses, resulting in a CA-RG-based risk model. Single-cell RNA sequencing (scRNA-seq) was employed to 
investigate cellular mechanisms, and immune infiltration analyses were conducted to assess CA-RGs’ impacts on the tumor microenvironment.
Results: Four CA-RGs (CDK2, KAT2B, NUBP1, CEP120) were identified as prognostic markers. A risk model effectively stratified patients by 
survival outcomes and was validated in external datasets. Immune infiltration analysis showed that low-risk patients had higher immune and 
stromal scores, with increased CD8+ T cells and M1 macrophages. ScRNA-seq analysis revealed interactions among fibroblasts, keratinocytes, 
and malignant cells, indicating CDK2 and KAT2B may promote tumor progression through intercellular signaling.
Conclusions: This study identifies novel CA-RGs and establishes a robust risk model for SKCM prognosis. Insights into the immune 
microenvironment and intercellular interactions provide a foundation for targeted therapies, including immunotherapy, offering potential 
strategies for improving SKCM management.
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Introduction

Melanoma is a highly malignant and aggressive skin cancer 
that metastasizes early through lymphatic or hematogenous 
routes, leading to poor prognosis[1]. Despite accounting 
for only 2% of all skin cancers, melanoma has the highest 
mortality rate among them. Globally, Skin Cutaneous 
Melanoma (SKCM) accounts for more than 80% of deaths 
related to skin cancer annually, making it one of the most 
lethal cancers threatening human health. Both the incidence 
and mortality rates of SKCM have steadily increased over the 
past few decades, with a growing prevalence among younger 
populations[2]. Originating from melanocytes in the skin's 
basal layer, SKCM is highly invasive and ranks as the fourth 
leading cause of cancer-related deaths worldwide[2]. SKCM 
can be classified into benign tumors, primary malignant 
tumors, and metastatic melanoma. The five-year survival rate 
for patients with primary melanoma exceeds 95%, while those 
with metastatic melanoma rarely survive beyond one year[3]. 
Surgical resection is the primary treatment for early-stage 
SKCM, but advanced cases present significant challenges, 
often requiring radiotherapy and chemotherapy. Early detection 

through biomarkers is crucial for improving outcomes. 
Despite progress in diagnosing and prognosticating SKCM 
using markers like BRAF and NRAS mutations and immune 
checkpoints such as PD-L1, identifying additional molecular 
characteristics for advanced SKCM remains a challenge[4].
The centrosome, a critical organelle in human cells, serves 
as the microtubule-organizing center in animal cells and is 
composed of two orthogonal centrioles embedded in the 
pericentriolar material (PCM). It plays an essential role in 
cellular processes, including signal transduction, cell polarity, 
division, and migration[5]. Defects in centrosome structure 
and function are associated with cancer. The most common 
defect is centrosome amplification (CA), which refers to the 
presence of more than two centrosomes or abnormally large 
centrosomes in a cell, including numerical and structural 
amplification[6]. Numerous studies have identified CA as a 
hallmark of cancer, often linked to abnormal tumor karyotypes 
and poor clinical outcomes. Mechanistically, CA impairs 
mitotic fidelity, leading to chromosomal instability, which 
underpins tumor initiation and progression [7]. Studies have 
indicated that CA is associated with the excessive replication 
of centrioles in human melanoma[8]. However, research 
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into the molecular mechanisms of CA in melanoma remains 
limited. Identifying the genetic mechanisms underlying 
centrosome amplification-related genes (CA-RGs) in SKCM 
will contribute to understanding the mechanisms driving this 
cancer’s development.
This study employs SKCM transcriptome data and CA-RGs to 
conduct bioinformatics analyses, aiming to identify prognostic 
markers and elucidate their molecular mechanisms, thereby 
offering new perspectives for SKCM treatment..

Materials and Methods

Analysis of gene expression differences between SKCM and 
normal skin tissues
To identify differentially expressed genes (DEGs) between 
SKCM and non-tumor t issues,  we downloaded gene 
transcriptome data and clinical information from the GEO 
dataset GSE15605 (https://www.ncbi.nlm.nih.gov/geo/
database). The dataset comprises 58 SKCM samples and 16 
normal skin tissue samples. Differential expression analysis 
was performed using the R package limma [9]. DEGs were 
filtered based on the criteria of P < 0.05 and |log2FC| > 0.05. A 
volcano plot was generated using the R package ggplot2 [10], 
and a heatmap was created using the R package pheatmap 
[11].

Identification of centrosome amplification-related genes in 
SKCM and  functional analysis
To identify differentially expressed centrosome amplification-
related genes (CA-RGs) in SKCM tissues, we obtained a 
set of 76 CA-RGs from the Gene Ontology database (http://
geneontology.org/). The intersection of these genes with the 
differentially expressed genes identified in SKCM provided 
the differentially expressed CA-RGs. A Venn diagram was 
created using the R package ggvenn[12]. Next, Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analyses were conducted on these CA-RGs 
using the R package clusterProfiler[13] to identify potential 
functional pathways involved in melanoma development. A 
pentagon bubble plot was generated using the R package 
ggplot2[10], and a chord diagram was created with the R 
package GOplot[14]. Additionally, to explore the protein-protein 
interaction (PPI) network among the differentially expressed 
CA-RGs, we used the STRING database (https://cn.string-
db.org/) with a confidence score >0.4, and visualized the 
interaction network using Cytoscape software[15].

Construction and validation of centrosome amplification-
related risk models
To construct a risk model based on the differentially expressed 
CA-RGs, we downloaded the GDC TCGA-SKCM dataset from 
the UCSC Xena database (https://xena.ucsc.edu/), which 
includes gene expression data, clinical information, and 
survival data for 457 SKCM samples. First, we conducted 
univariate Cox regression analysis using the R package 
survival[16], selecting genes with P < 0.05 as input features 
for LASSO Cox regression. The R package glmnet [17] was 
used to fit a generalized linear model with penalized maximum 
likelihood, applying L1 regularization to remove features with 
a penalty score of 0. The remaining non-zero features were 

identified as candidate genes for constructing the risk model. 
To ensure the validity and reliability of the Cox regression 
model, we tested the proportional hazards (PH) assumption 
for the candidate genes using the R package survival. Genes 
with P > 0.05 were considered to pass the PH test. Next, we 
performed multivariate Cox regression on the genes that 
passed the PH test, using the step function for stepwise 
Cox regression to identify prognostic genes. The regression 
coefficients for each gene were obtained from the model. 
A forest plot displaying the results of the univariate and 
multivariate Cox regression analyses was generated using 
the R package forestplot[18].The risk score for each sample 
in the TCGA-SKCM cohort was calculated using the following 
formula: Risk score = ∑ Exp (mRNA) * Coef (mRNA), where 
Exp represents the mRNA expression level of each prognostic 
gene, and Coef represents the corresponding Cox regression 
coefficient. The 457 samples in the TCGA-SKCM cohort were 
divided into high-risk and low-risk groups based on the optimal 
cut-off value of the risk score. The distribution of risk scores 
and survival status of the samples were visualized using the R 
package ggplot2. We then compared the survival probabilities 
between the high-risk and low-risk groups using the R package 
survival and plotted Kaplan-Meier survival curves with the 
R package survminer[19]. Receiver operating characteristic 
(ROC) curves were generated with ggplot2, and the area under 
the curve (AUC) for 1-year, 3-year, and 5-year survival was 
estimated using the R package survivalROC[20] to assess 
the sensitivity and specificity of the risk model. A heatmap 
showing the expression of prognostic genes across TCGA-
SKCM samples was created with the R package pheatmap. To 
validate the robustness and effectiveness of the risk model, 
we downloaded an independent SKCM dataset, GSE100797, 
from the GEO database (https://www.ncbi.nlm.nih.gov/geo/
database), which includes gene expression data and survival 
information for 25 SKCM samples.

Construction and evaluation of prognostic models
To evaluate the prognostic capability of combining risk scores 
with clinical factors, we constructed a prognostic model in 
the TCGA-SKCM cohort. First, we used the Wilcoxon test or 
Kruskal-Wallis test to assess differences in risk scores across 
six clinical subgroups: age, sex, stage, T stage, N stage, and M 
stage. A P value < 0.05 was considered statistically significant, 
and the results were visualized as boxplots using the R 
package ggplot2. We then analyzed the survival differences 
between high-risk and low-risk patients within subgroups 
showing significant differences in risk scores. Next, univariate 
Cox regression analysis was performed based on risk scores, 
age, sex, stage, T stage, N stage, and M stage in the TCGA-
SKCM cohort. Factors with P < 0.05 were subjected to the 
proportional hazards (PH) assumption test, and those with 
P > 0.05 were included in the multivariate Cox regression 
model. Factors with P < 0.05 in the multivariate analysis 
were incorporated into the final prognostic model. The R 
package survival was used for survival analysis, univariate 
Cox regression, PH assumption testing, multivariate Cox 
regression, and model construction. Kaplan-Meier survival 
curves were plotted using survminer, while forest plots were 
generated using forestplot to display the results of both 
univariate and multivariate Cox analyses. A nomogram was 
drawn using the R package regplot[21].Subsequently, we 
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assessed the performance of the prognostic model using 
calibration curves, ROC curves, and decision curve analysis 
(DCA). Model calibration was performed using the R package 
rms[22]. The specificity and sensitivity of the ROC curves were 
computed with timeROC [23], and decision curve data were 
calculated using ggDCA[24].

Gene set enrichment analysis
To fur ther explore the biological pathways involving 
prognostic genes, we first calculated the Spearman correlation 
coefficients between genes in the TCGA-SKCM cohort and 
ranked the genes based on these coefficients. Next, KEGG 
pathway enrichment analysis was conducted using the R 
package clusterProfiler, with significance thresholds set at 
p.adjust < 0.05 and |NES| > 1. The top five most significantly 
enriched pathways were visualized using the R package 
enrichplot.

Functional enrichment analysis
To investigate pathway alterations between the high- and 
low-risk groups in the TCGA-SKCM cohort, we used Gene 
Set Variation Analysis (GSVA) to estimate the biological 
functions and signaling pathways of the prognostic genes. 
Specifically, molecular hallmark scores were calculated for 
each patient using the Hallmarks database in the R package 
GSVA[25]. Differential pathway analysis between the high- and 
low-risk groups was performed using the R package limma. 
All pathways were visualized using ggplot2, with P < 0.05 
considered statistically significant.

Immune infiltration analysis
To investigate immune cell infiltration in SKCM, we used the R 
package xCell[26] to calculate infiltration scores for 34 types 
of immune cells in the TCGA-SKCM cohort. Differences in cell 
scores between high- and low-risk groups were compared, 
with cells showing P < 0.05 identified as significantly different. 
The correlations between these different immune cells and 
their associations with risk scores were also analyzed. ggplot2 
was used to visualize cell infiltration scores as bar plots 
and correlation lollipop charts, while ggpubr[27] was used 
to generate box plots for differential analysis. Additionally, 
corrplot[28] was employed to display correlation heatmaps. 
To further analyze the relationship between immune and 
stromal cell infiltration and prognostic genes across the high- 
and low-risk groups, we first calculated immune, stromal, and 
composite scores for each sample in the TCGA-SKCM cohort 
using the R package estimate[29]. Differences in scores 
between the two risk groups were then compared, and the 
Spearman correlation coefficients between these scores and 
risk scores were calculated. The ggplot2 package was used to 
generate violin plots for differential score analysis and scatter 
plots for correlation analysis.

Analysis of immune response capacity and immune status
To assess immune response capacity and immune status 
between high- and low-risk groups, we first downloaded 
melanoma clinical data from the TCIA database (https://
tcia.at/home) and extracted patients’ Immune Phenotype 
Scores (IPS). The IPS differences between the high- and low-
risk groups in the TCGA-SKCM cohort were then compared. 
Additionally, we extracted 42 immune checkpoints from the 

literature (PMID: 37215879) and compared the expression 
levels of these immune checkpoints between the high- and 
low-risk groups in the TCGA-SKCM cohort. The ggplot2 
package was used to generate violin plots to visualize 
differences in IPS scores and box plots for immune checkpoint 
expression differences.

Drug sensitivity analysis
To evaluate the sensitivity of SKCM patients to common 
chemotherapeutic agents, we utilized the GDSC database 
(https://www.cancerrxgene.org/) to predict the half-
maximal inhibitory concentration (IC50) values for 198 
chemotherapeutic and targeted therapy drugs in the TCGA-
SKCM cohort. Using the pRRophetic package[30],  we 
compared the IC50 values between high- and low-risk groups 
for each drug. The most significant differences in IC50 values 
were visualized using violin plots generated with the ggplot2 
package.

Somatic variants analysis
To investigate the differences in gene mutations between 
high- and low-risk groups, we utilized the TCGAmutations 
package[31] to download somatic mutation data for 
melanoma. Subsequently,  we employed the maftools 
package[32] to generate waterfall plots depicting the top 20 
most frequently mutated genes in the TCGA-SKCM cohort for 
both risk groups.

Analysis of prognostic genes regulatory mechanisms
To further explore the interaction between prognostic genes 
and other genes or elements, we first accessed the miRNet 
database (https://www.mirnet.ca/) to identify transcription 
factors (TFs) targeting the prognostic genes. We selected 
the JASPAR database to construct a TF-gene regulatory 
network. Subsequently, we utilized the GeneMANIA database 
(https://genemania.org/) to identify genes associated with 
the prognostic genes, examining their interactions, including 
protein-protein, protein-DNA, and genetic interactions, as well 
as pathways, reactions, gene and protein expression data, and 
protein domain information. The interaction network and the 
TF-gene regulatory network were visualized using Cytoscape 
software.

Single-cell transcriptome sequencing analysis
To analyze the expression distribution of prognostic genes at 
the single-cell level, we used the single-cell dataset GSE215120 
to explore SKCM pathogenesis. Raw data from three SKCM 
samples were downloaded from the GEO database (https://
www.ncbi.nlm.nih.gov/geo/). Cells were filtered based on UMI 
counts (<500 or >20,000), mitochondrial content (>20%), and 
features (<200 or >6,000). Data normalization was performed 
using the NormalizeData function (scale factor=10,000), and 
variable genes were identified using the FindVariableGenes 
function (vst method; top 2,000 features). Features were 
normalized and centered using the ScaleData function. 
Principal component analysis (PCA) was conducted using the 
RunPCA function (50 principal components retained), with 
significance assessed via the JackStraw function. Cell clusters 
were identified using the FindClusters function (SNN modular 
optimization; resolution=0.8), and dimensionality reduction 
was performed with the RunTSNE function, visualized using 
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DimPlot. Clusters were annotated using the CellMarker 2.0 
database and manually curated marker genes. The top three 
cell types with the highest expression of prognostic genes 
were identified as key cells. All analyses were performed 
using the Seurat package[33]. To explore receptor-ligand 
interactions, we referenced the CellChatDB.human database 
and inferred interactions using the CellChat package[34]. The 
c Communication networks were visualized with network 
diagrams and heatmaps. Signaling pathways were inferred 
using the netAnalysis_computeCentrality function, and signal 
senders/receivers were visualized with the netAnalysis_
signalingRole_scatter function. Pseudotime analysis was 
conducted using the monocle package[35] to assess dynamic 
changes in key cells. Cell trajectories were displayed using the 
plot_cell_trajectory function, while prognostic gene expression 
changes were visualized with the plot_genes_branched_
heatmap and plot_genes_in_pseudotime functions.

Analysis of prognostic genes expression
To analyze the expression of prognostic genes, we first 
compared the transcriptomic expression differences between 
SKCM tissues and normal skin tissues in the dataset 
GSE15605, using the ggplot2 package to present the results 
as boxplots. To validate gene expression at the protein level, 
we downloaded immunofluorescence images of prognostic 
genes from the HPA database (https://www.proteinatlas.org/) 
for normal skin melanocytes and melanoma cells, and we 
compared the protein staining intensity between the groups.

Results

Analysis of gene expression differences between SKCM and 
normal skin tissues
We identified a total of 6,399 differentially expressed genes, 
comprising 3,527 upregulated genes and 2,872 downregulated 
genes and presents the expression levels of the top 10 
upregulated and downregulated genes (Supplementary Figure. 
1).

Identification of centrosome amplification-related genes in 
SKCM and functional analysis
We intersected the previously identified 6,399 differentially 
expressed genes with 76 CA-RGs, yielding 17 differentially 
expressed CA-RGs for further analysis (Supplementary 
Figure. 2A). The results of the GO annotation indicated that 
these genes were markedly augmented in the centrosomal 
functions and pathways, including centrosome duplication, 
centrosome cycle, centriole assembly, microtubule organizing 
center organization, and tubulin binding (Supplementary 
Figure. 2B-D). As evidenced by the KEGG enrichment analysis, 
these genes were mostly correlated with pathways of cell 
cycle (Supplementary Figure. 2E). To investigate the protein-
protein interaction (PPI) relationships among the differentially 
expressed CA-RGs, we constructed a PPI network using the 
STRING database (Supplementary Figure. 2F).

Construction and validation of centrosome amplification-
related risk models
To construct a risk model for centrosome amplification-
related genes (CA-RGs) in SKCM, we performed univariate 

Cox regression analysis on the TCGA-SKCM cohort using 17 
differentially expressed CA-RGs. This identified 7 survival-
associated genes (P < 0.05): CDK2, RTTN, KAT2B, PKD2, 
CCP110, NUBP1, and CEP120. CDK2 and RTTN were risk 
factors (HR > 1), while KAT2B, PKD2, CCP110, NUBP1, and 
CEP120 were protective factors (HR < 1) (Figure 1A). LASSO 
Cox regression with 10-fold cross-validation refined the 
model to 6 genes: CDK2, RTTN, KAT2B, PKD2, NUBP1, and 
CEP120 (Figure 1B). All 6 genes met the proportional hazards 
assumption (P > 0.05) (Supplementary Table 1). Multivariate 
and stepwise Cox regression analyses further narrowed the 
model to 4 prognostic genes: CDK2, KAT2B, NUBP1, and 
CEP120. Although CEP120 was not significantly associated 
with survival, all 4 genes were retained as essential features 
based on stepwise regression. These genes were used to 
calculate the risk score, forming the final risk model (Figure 
1C).
Based on the optimal cutoff value of the risk score (1.340736), 
patients were stratified into high-risk (n = 374) and low-risk 
(n = 83) groups. Survival analysis revealed significantly lower 
survival probabilities in the high-risk group (P < 0.0001) (Figure 
2A). ROC curve analysis yielded AUC values of 0.6, 0.61, and 
0.63 for 1-year, 3-year, and 5-year survival, respectively (Figure 
2B). Risk score distribution and survival status (Figure 2C, D) 
showed more patients and deaths in the high-risk group. A 
heatmap of prognostic gene expression (Figure 2E) indicated 
higher CDK2 expression in the high-risk group, while KAT2B, 
NUBP1, and CEP120 were downregulated.
To validate the risk model's adaptability and stability, we 
recalculated risk scores for patients in the GSE100797 cohort. 
Using the optimal cutoff (-1.674684), patients were stratified 
into high-risk (n = 13) and low-risk (n = 12) groups. The 
Kaplan-Meier (KM) curve showed significantly lower survival 
probabilities in the high-risk group (P = 0.026) (Figure 2F). ROC 
curve analysis yielded AUC values of 0.61, 0.67, and 0.67 for 
1-year, 3-year, and 5-year survival, respectively (Figure 2G). The 
risk scores and survival status of patients were visualized in 
Figure 2H, I. The heatmap confirmed higher CDK2 expression 
in the high-risk group and lower expression of KAT2B, NUBP1, 
and CEP120 (Figure 2J).

Construction and evaluation of prognostic models
To evaluate the prognostic capability of the risk score 
alongside clinical factors, we constructed a prognostic model 
using the TCGA-SKCM cohort. Differences in risk scores 
across six clinical factors—age, sex, stage, T stage, N stage, 
and M stage—were assessed using Wilcoxon or Kruskal-Wallis 
tests. Significant differences were observed in T stage (P < 
0.05) (Supplementary Figure. 3A-F). Survival analysis within 
T stage subgroups revealed significantly lower survival in the 
high-risk group of the T3/T4 subgroup compared to the low-
risk group (Supplementary Figure. 3 G, H).
Next, univariate Cox regression analysis was performed on the 
risk score, age, sex, stage, T stage, N stage, and M stage in the 
TCGA-SKCM cohort. Risk score, age, stage, T stage (excluding 
T2), N stage, and M stage were significantly associated with 
survival (HR > 1), indicating they are risk factors (Figure 3A). A 
proportional hazards (PH) assumption test confirmed that risk 
score, age, stage, N stage, and T stage met the assumption (P 
> 0.05). Multivariate Cox regression analysis revealed that risk 
score, N stage, and T stage (excluding T2) were significantly 
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associated with survival and served as risk factors (Figure 3B). 
These three factors were integrated into a prognostic model 
to predict 1-year, 3-year, and 5-year survival probabilities. A 
nomogram was constructed to visualize the model, predicting 
survival probabilities for a patient with a total score of 129 
based on their risk score, T stage, and N stage. The predicted 
probabilities were 0.968 (1-year), 0.795 (3-year), and 0.675 (5-
year) (Figure 3C).
To evaluate the prognostic model’s performance, we generated 
a calibration curve, ROC curve, and decision curve analysis 
(DCA). The calibration curve showed close agreement between 
predicted and observed values (Figure 3D). The ROC curve 
achieved AUC values of 0.79, 0.79, and 0.75 for 1-year, 3-year, 
and 5-year predictions, respectively (Figure 3E-G). The DCA 
curve revealed that the prognostic model yielded the highest 
net benefit (Figure 3H).

Gene set enrichment analysis and functional enrichment 
analysis
We conducted independent Gene Set Enrichment Analysis 
(GSEA) for each gene, identifying the top five significantly 
enriched pathways. For CDK2, 193 pathways were enriched, 
with the top five being oxidative phosphorylation, lysosome, 
complement and coagulation cascades, cytokine-cytokine 
receptor interaction, and neuroactive l igand-receptor 
interaction (Supplementary Figure. 4A). For KAT2B, 50 
pathways were enriched, including autophagy (animal), 

phosphatidylinositol signaling system, T cell receptor signaling 
pathway, alcoholic liver disease, and NOD-like receptor 
signaling pathway (Supplementary Figure. 4B). NUBP1 
analysis revealed 143 pathways, with the top five being viral 
protein interaction with cytokine and cytokine receptor, graft-
versus-host disease, allograft rejection, hematopoietic cell 
lineage, and systemic lupus erythematosus (Supplementary 
Figure. 4C). For CEP120, 99 pathways were enriched, including 
nucleocytoplasmic transport, ubiquitin-mediated proteolysis, 
Polycomb repressive complex, biosynthesis of amino acids, 
and Vibrio cholerae infection (Supplementary Figure. 4D).
We employed Gene Set Variation Analysis (GSVA) to 
estimate the biological functions and signaling pathways of 
prognostic genes, using Hallmarks as the background gene 
set. We identified 34 differential pathways, with 20 pathways 
upregulated and 14 pathways downregulated in the high-risk 
group (Supplementary Figure. 4E).

Immune infiltration analysis
To investigate immune cell infiltration in SKCM, we calculated 
infiltration scores for 34 immune cell types in the TCGA-
SKCM cohort using the xCell algorithm. Significant differences 
were observed in 25 cell types between high-risk and low-
risk groups, with 23 showing lower infiltration scores in 
the high-risk group and 2 showing higher scores (Figure 
4A). Spearman correlation analysis revealed predominantly 
positive correlations among immune cell infiltration scores 

Figure 1 Identification of prognosis-related centrosome amplification-related genes. (A) Forest plot of univariate Cox regression analysis. (B) 
LASSO Cox analysis for CA-RGs from univariate Cox regression. (C) Forest plot of multivariate Cox regression analysis.

A
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Figure 2 The prognostic value of the centrosome amplification-related genes for skin cutaneous melanoma (SKCM) patients. (A, F) Kaplan–
Meier curve of overall survival (OS) between high- and low-risk groups in The Cancer Genome Atlas (TCGA) cohort and Gene Expression Omnibus 
(GEO) cohort (GSE100797). (B, G) The predictive value of the prognostic CA-RGs measured by receiver operating characteristic (ROC) curves at 
1, 3, and 5 years in the TCGA cohort and GSE100797 cohort. (C-E, H-J) The distribution of the risk score, survival status and heatmap visualizing 
the expression of 4 prognostic CA-RGs in the TCGA cohort and GSE100797 cohort.

A
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Figure 3 Establishment of the clinical nomogram. (A, B) Forest plot of the univariate Cox regression analysis and multivariate Cox regression 
analysis containing signature-based risk score and clinical factors. (C) Nomogram for predicting 1, 3 and 5 year overall survival (OS) of skin 
cutaneous melanoma (SKCM) patients in The Cancer Genome Atlas (TCGA) cohort. (D) Calibration curves of the nomogram predicted the 
probability of the 1, 3 and 5 year OS in TCGA dataset. The x-axis shows nomogram-predicted probability of survival, and the y-axis shows actual 
survival. (E-G) Multi-index receiver operating characteristic (ROC) curves of the nomogram and other clinical factors for 1, 3 and 5 year risk. (H) 
Decision curve analysis (DCA) of the nomogram and other clinical indicators for 1, 3 and 5 year risk.

A
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(Figure 4B), while differential immune cell scores were 
negatively correlated with risk scores (Figure 4C). Using the 
ESTIMATE algorithm, we assessed immune cell, stromal cell, 
and combined scores, finding all three significantly lower in 
the high-risk group (Figure 4D). These scores also exhibited 
negative correlations with risk scores (Figure 4E). 

Analysis of immune response capacity and immune status
We first analyzed the Immune Prognostic Score (IPS) in the 
TCGA-SKCM cohort. The results indicated that there was no 

significant difference in scores between the high-risk and 
low-risk groups when both CTLA4 and PD1 were suppressed. 
However, when either one of the immune checkpoints was 
suppressed or neither was suppressed, the low-risk group 
exhibited higher response scores (Supplementary Figure. 
5A). To further clarify the differences in immune checkpoint 
expression levels, we analyzed the transcriptional expression 
of 42 immune checkpoints between the high-risk and low-risk 
groups in the TCGA-SKCM cohort. The findings revealed that 
40 immune checkpoints were expressed at lower levels in the 

Figure 4 Relationships between CA-related signature genes and immune infiltration. (A) Estimation of the immune infiltration levels utilizing the 
Xcell algorithm across different risk score groups in TCGA-SKCM. (B) Correlation heatmaps of differential immune cells. (C) Correlation analysis 
between differential immune cells and risk score. (D) The differences in TME score. (E) Correlation analysis between TME score and risk score.

A
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high-risk group (Supplementary Figure. 5B).
Drug sensitivity analysis
To assess the sensitivity of SKCM patients to commonly used 
chemotherapeutic agents, we predicted the IC50 values of 
198 chemotherapeutic drugs within the TCGA-SKCM cohort 
and compared the differences between high-risk and low-
risk groups. Among the top ten drugs presented, the high-risk 
group exhibited higher IC50 values (Supplementary Figure. 6).

Somatic mutation analysis
We analyzed the mutation status of the top 20 genes in the 
TCGA-SKCM cohort. The results indicated that 94.86% of 
patients in the high-risk group (351 individuals) had somatic 
mutations, while 96.34% of patients in the low-risk group (79 
individuals) exhibited somatic mutations. The most common 
type of mutation in both groups was multi-site mutations, 
followed by missense mutations. The gene with the highest 
mutation frequency was TTN, followed by MUC16. Notably, 
mutations in DNAH5 ranked third in the high-risk group but 
ranked tenth in the low-risk group (Supplementary Figure. 7).

Analysis of prognostic genes regulatory mechanisms
We first uti l ized the miRNet database to predict the 
transcription factors targeting the prognostic genes and 
constructed a transcription factor-prognostic gene interaction 
network. CDK2 was targeted by 14 transcription factors. 
The transcription factor FOXC1 was found to target three 
prognostic genes (Supplementary Figure. 8A). Subsequently, 
we employed the geneMANIA database to investigate the 
interactions of prognostic genes with other genes. The analysis 
revealed 20 interacting genes, with NUBP2 demonstrating the 
strongest interaction (Supplementary Figure. 8B).

Single-cell transcriptome sequencing analysis
We utilized the single-cell dataset GSE215120 to explore 
SKCM pathogenesis. Supplementary Figure. 9A displays the 
number of genes, counts, and mitochondrial proportions 
quality control, while Supplementary Figure. 9B presents a 
volcano plot of the variable genes. Based on the JackStraw 
plot and elbow plot (Supplementary Figure. 9C), we selected 
15 clusters for analysis. Dimensionality reduction and 
clustering yielded 20 cell clusters, annotated into eight cell 
types: B cells, endothelial cells, fibroblasts, keratinocytes, 
malignant cells, monocytes, NK cells, and T cells (Figure 5A). 
Figure 5B illustrates marker gene expression for each cell type. 
Statistical analysis revealed malignant cells, T cells, and NK 
cells as the top three cell types (Figure 5C). Prognostic gene 
expression analysis identified malignant cells, keratinocytes, 
and monocytes as key players for pseudotime analysis (Figure 
5D). 
To investigate receptor-ligand interactions among the eight 
annotated cell types, we inferred intercellular communication. 
The network diagram illustrates the quantity and strength 
of communication networks (Figure 6A). Endothelial cells, 
fibroblasts, keratinocytes, NK cells, and malignant cells 
exhibited higher numbers of links, while B cells, T cells, and 
monocytes had fewer (Figure 6B). We categorized endothelial 
cells and fibroblasts as signal senders and malignant cells, 
keratinocytes, and NK cells as signal receivers. The bubble 
plot (Figure 6C) revealed that communication between these 
groups primarily involved genes such as COL1A1, COL1A2, 

COL4A1, COL4A2, COL6A1, COL6A2, and COL6A3, among 
others.
We performed pseudotime analysis based on cell expression 
pattern similarities, identifying a major path with two minor 
branches. This assigned pseudotime-dependent progression 
states to malignant cells, keratinocytes, and monocytes using 
Monocle2-reconstructed trajectories (Figure 6D). Prognostic 
gene expression patterns along the melanoma progression 
trajectory were analyzed, revealing two distinct clusters in 
the pseudotime heatmap (Figure 6E). The pseudo-time plot 
reveal that the expression levels of the prognostic genes 
CEP120 and NUBP1 remain relatively stable throughout the 
cell development process, with NUBP1 increasing only at the 
end. In contrast, CDK2 expression gradually rises during the 
coexistence of malignant cells, monocytes, and keratinocytes, 
accelerating when only malignant cells are present. KAT2B 
shows a slow increase in expression during the phase of 
coexistence among the three cell types, followed by a decline 
after monocytes completely transition. However, KAT2B 
expression rises sharply when only malignant cells remain. In 
summary, during the progression of melanoma, the changes 
in expression levels of CDK2 and KAT2B primarily regulate 
the transition of monocytes and keratinocytes into malignant 
cells. (Figure 6F).

Analysis of prognostic genes expression
We found that all four prognostic genes were upregulated in 
tumor tissues in the GSE15605 dataset (Supplementary Figure. 
10A). Subsequently, we utilized the Human Protein Atlas 
(HPA) database to download immunofluorescence images of 
prognostic genes in normal skin melanocytes and melanoma 
tissues. The results showed that CDK2 and NUBP1 exhibited 
high expression at the protein level in SKCM, while CEP120 did 
not display detectable fluorescence signals. KAT2B displayed 
high fluorescence signal; however, it was apparent that its 
expression was more intense in tumor tissues. In summary, 
the expression patterns of CDK2 and NUBP1 are consistent at 
both transcriptomic and protein levels (Supplementary Figure. 
10B). 

Discussion

CA has been shown to be involved in the development 
and progression of human cancers and is also a valuable 
prognostic factor in various cancer types[7]. However, there 
are relatively few studies on centrosome amplification in 
SKCM. Therefore, we aimed to evaluate the effect of CA-RGs 
on cancer development, prognosis prediction, tumor immune 
microenvironment changes and treatment response in SKCM.
We identified 17 genes by intersecting normal-tumor 
differential genes from the GSE15605 database with 76 
centrosome amplification-related genes (CA-RGs) from the 
Gene Ontology database, which were enriched in centrosomal 
functions and pathways. To refine CA-RGs in melanoma and 
investigate their association with prognosis in SKCM, we 
constructed a molecular signature based on 4 prognostic 
genes using Cox regression analysis. A CA-RGs risk score was 
calculated for each SKCM patient, and patients were stratified 
into high- and low-risk subgroups based on an optimal cutoff. 
The high-risk group showed a significantly worse overall 
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Figure 5 Analysis of the SKCM by single-cell RNA sequencing. (A) The T-distributed stochastic neighbor embedding (tSNE) algorithm was applied 
for dimensionality reduction analysis, and eight cell clusters were successfully classified. (B) Dot plot of marker genes expression in different 
SKCM cell subsets. (C) Cell proportions of cell subsets in SKCM samples. (D) Dot plot and feature plots of the expression distribution for 
prognostic genes in cell subsets.
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Figure 6 Crosstalk between cell subtypes and Pseudo-Time analysis. (A) An overview of cell-cell interactions. Arrow and edge color indicate 
direction. Edge thickness indicates the number (Left) or the weighted (Right) of interaction between populations. The loops indicate autocrine 
circuits. (B) Scatter plot showing the interaction strengths of different cell types, and the size of the bubbles is proportional to the number of 
inferred links associated with each cell subtype. (C) The dot plot of communication probability and significance of different cellular interactions, 
where each row represents a specific type of cellular interaction, each column represents a different gene-interaction pair, and the size of the 
bubbles indicates the probability of communication, with larger bubbles increasing the probability, and the color indicates the significance level. (D) 
Distribution of three cell subtypes on the pseudo-time trajectory. Cells are colored based on pseudo-time, state and cell type. (E) Heatmap shows 
the expression of prognostic genes along the pseudo-time in each cell cluster. (F) Expression kinetics of four genes in three cell subtypes along 
the pseudo-time. Scatter plot shows the variability of gene expressions following pseudo-time based on cell states.
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survival (OS), consistent across stratified survival analyses in 
GEO cohorts. Risk scores were significantly associated with 
clinical T stages, with higher scores correlating with poorer 
survival in the T3/T4 stages. Univariate and multivariate 
Cox analyses confirmed the CA-related signature as an 
independent prognostic factor. To enhance its predictive 
performance and clinical applicability, a nomogram integrating 
the CA-related signature and two additional prognostic factors 
was developed. Calibration curves, multi-index ROC curves, 
and decision curve analysis (DCA) demonstrated its superior 
efficacy in predicting OS compared to traditional clinical 
features such as age and histological stage.
The most signif icant  f inding from this study is  the 
identification of CDK2 as a key prognostic factor. Cyclin-
dependent kinase 2 (CDK2) plays a critical role in the cell 
cycle by regulating the transition from the G1 phase to the 
S phase[36], and is required for centrosome duplication[37]. 
Matsuura found that the phosphorylation of SMAD3 
by CDK2–cyclin-E limits its transcriptional activity and 
eventually slows cell-cycle progression[38]. Our gene set 
enrichment analysis (GSEA) revealed that CDK2 is involved 
in oxidative phosphorylation and immune-related pathways 
as well, indicating its dual role in metabolic regulation and 
immune evasion[39] during melanoma progression. Lysine 
acetyltransferase 2B (KAT2B) ,also named as PCAF, plays a 
crucial role in the regulation of gene expression at the post-
transcriptional level by acetylation[40], and is associated with 
many types of cancer. It has been reported to be involved in 
regulating the acetylation and stability of HMGA2 to accelerate 
the growth of esophageal squamous cell carcinoma[41]. 
Moreover, induction of PGK1 enzymatic activity and cancer 
cell metabolism by KAT2B engagement-mediated acetylation 
plays an important role in liver cancer progression[42]. On the 
other side, one outcome demonstrated that PCAF blocked 
the growth of hepatocellular carcinoma via enhancing cell 
autophagy[43]. Li has found KAT2B degradation contributes 
to the development of pancreatic cancer via the Ras-ERK1/2 
signaling pathway[44]. Our results show that KAT2B is a 
protective prognostic gene analyzed by Cox regression 
analysis and is engaged in autophagy, which is consistent 
with a previous study. In our analysis of the prognostic gene 
interaction network, we found that NUBP1 and NUBP2 exhibit 
the closest interaction. This is likely because both proteins 
are crucial for the synthesis and transport of intracellular iron-
sulfur clusters, and they function in a coordinated manner to 
fulfill their roles in these processes[45]. NUBP1, NUBP2 and 
KIFC5A have been implicated in the regulation of centriole 
duplication with their depletion causing supernumerary 
centrioles[46]. This function is critical in maintaining genomic 
stability, as excessive CA is known to promote tumorigenesis 
by driving chromosomal instability[47]. The protective nature 
of NUBP1 identified in our study suggests that restoring its 
function could be a potential therapeutic strategy to counteract 
CA-induced tumor progression in SKCM. CEP120, although 
not significantly associated with survival, was included in our 
final risk model based on its role in centrosome biogenesis 
and cilia formation[48]. While its exact function in melanoma 
remains less clear, it has been implicated in centriole 
elongation and centrosomal microtubule organization[49], 
both of which are essential for proper cell division . Further 
research is warranted to elucidate whether CEP120 plays a 

contributory role in SKCM progression through its involvement 
in CA or other mechanisms of tumor growth. Our results 
of GSVA analysis indicate that melanoma development is 
associated with multiple signaling pathways. For instance, 
the MYC_TARGETS_V1 and MYC_TARGETS_V2 pathways 
are linked to MYC, a transcription factor that regulates cell 
proliferation, growth, and metabolism, often overexpressed to 
promote tumor cell proliferation and survival[50]. Additionally, 
the INTERFERON_GAMMA_RESPONSE pathway involves 
interferon-gamma (IFN-γ), a crucial immune regulator that 
plays a key role in modulating immune responses, particularly 
in antiviral and antitumor reactions[51]. The downregulation 
of the IFN-γ-related pathway in melanoma indicates a reduced 
antitumor capacity, facilitating tumor progression.
Beyond the effects on tumor growth, CA-RGs also affect the 
composition of the tumor immune microenvironment. Tumor-
associated macrophages (TAM) can be divided into two major 
subtypes: M1 TAMs counteract tumor progression while M2 
TAMs promote tumor growth and inhibit tumor immunity[52]. 
In this study, we found that M1 macrophages infiltrated the 
low CA-related signature risk group more than the high CA-
related signature risk group. The proliferation and cytotoxicity 
CD8+ T cells and their secretion of IFN-γ induce an antitumor 
response[53]. Tumor regression after ICB requires abundant 
infiltration of CD8+ T cells in proximity to tumor cells[54]. 
Consistent with this, our results show that the low-risk group 
harbors more CD8+ cytotoxic T lymphocytes. This suggests 
that the tumor microenvironment in the low-risk group may 
have stronger antitumor immune activity, while the high-risk 
group tends toward an immunosuppressive state. ESTIMATE 
analysis indicates that the low-risk group has significantly 
higher ESTIMATE, immune, and stromal scores compared to 
the high-risk group. This finding suggests that the low-risk 
group’s microenvironment is richer in immune and stromal 
components, potentially enhancing antitumor immune 
responses and contributing to better prognosis. Furthermore, 
the correlation analysis shows a negative correlation between 
the risk score and the ESTIMATE, immune, and stromal 
scores, indicating that as the risk score increases, immune 
and stromal component levels in the tumor microenvironment 
decrease, which indicates that a higher risk score may be 
associated with a microenvironment deficient in immune 
activity and stromal support, reflective of a more aggressive 
and immune-evasive tumor profile. To date, immunotherapeutic 
strategies have manifested curative therapeutic effects in 
unresectable or metastatic melanoma[55]. Unfortunately, the 
clinical benefits remain unsatisfactory owing to low objective 
remission rates and resistance to ICB in a substantial fraction 
of melanoma patients. Investigating a predictive marker 
for benefit from immunotherapy is thus urgently needed. 
Cytotoxic T-lymphocyte associated protein-4 (CTLA-4) and 
the Programmed Death Receptor 1 (PD-1) are immune 
checkpoint molecules that are well-established targets of 
antibody immunotherapies for the management of malignant 
melanoma[4]. In our study, across all checkpoint expression 
statuses, low-risk scores consistently associate with higher 
IPS scores in samples where at least one immune checkpoint 
is expressed. This indicates that high-risk score group may 
enhance immune evasion, while low-risk score group exhibit 
greater immune activity and higher potential responsiveness to 
immunotherapy. These findings support a stratified approach 
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to immunotherapy, where patients with low-risk score may be 
more suitable candidates for PD1- or CTLA4-based checkpoint 
inhibition. We also evaluated the sensitivity of high-risk and 
low-risk patients to chemotherapeutics and targeted drugs 
to better guide clinical medication for SKCM patients and 
the high-risk group exhibited higher IC50 values, indicating 
that patients in the low-risk group have greater sensitivity to 
chemotherapy.
At the single-cell level, malignant cells, monocytes, and 
keratinocytes emerge as key cell  types in melanoma 
progression. This process relies primarily on communication 
from fibroblasts to keratinocytes and malignant cells. Under 
the regulatory influence of prognostic genes CDK2 and KAT2B, 
this signaling promotes the transition of keratinocytes and 
monocytes toward malignant cell phenotypes.

Conclusion

Although our study has significant clinical implications for 
survival prediction and therapeutic decision-making, several 
limitations must be acknowledged. First, we identified four 
novel prognostic genes related to centrosome amplification 
and constructed high-performance risk and prognostic 
models. These models offer new, reliable tools for clinical 
survival prediction and patient risk assessment and provide 
potential therapeutic targets for melanoma, including drug and 
immunotherapy interventions. Furthermore, our findings reveal 
melanoma progression mechanisms and their relationships 
with prognostic genes at a higher-resolution level. However, 
given that this study is based on data analysis, there are 
inherent limitations. The molecular mechanisms through 
which these CA-related signature biomarkers contribute to 
disease progression and therapy resistance in patients with 
SKCM should be further investigated through in experimental 
studies.
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