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Objective: This study intends to investigate the causal association between 35 blood and urine biomarkers and postmenopausal osteoporosis 
(PMOP) through two-way Mendelian randomization analysis. 
Methods: This study adopted a two-way Mendelian randomization analysis, with data sourced from the UK Biobank and the Finnish Biobank 
Study. Among them, the R12 dataset of the Finnish Biobank Study was used as the test set, and the R11 dataset as the validation set. The 
study regarded 35 biomarkers as exposure factors and PMOP (a condition characterized by decreased bone density after menopause) as the 
outcome variable. It was analyzed through methods such as the inverse variance weighting method, the weighted median method, and MR-Egger 
regression, and combined with the MR-PRESSO test to exclude the influence of pleiotropy.
Results: In the positive direction analysis, alkaline phosphatase, glomerular filtration rate, sex hormone-binding globulin, and total protein 
showed statistical significance in both the test set and the validation set, and they were all risk factors for PMOP. Direct bilirubin and uric acid 
demonstrated statistical significance in both the test and validation sets, and they served as protective factors against PMOP. In the negative 
direction analysis, alkaline phosphatase showed statistical significance in both the test set and the validation set, being a positive result for 
PMOP; sex hormone-binding globulin and total bilirubin showed statistical significance in both the test set and the validation set, being negative 
results for PMOP. 
Conclusion: Employing bidirectional Mendelian randomization methodology, this investigation elucidated the causal relationships between 
multiple hematological and urinary biomarkers and PMOP. The results provide promising biomarker candidates for future diagnostic and 
therapeutic strategies targeting PMOP, while simultaneously establishing a robust framework for subsequent exploration of its underlying 
pathophysiological mechanisms.
Keywords: Postmenopausal osteoporosis; Blood and urine biomarkers; Mendelian randomization; Causal association; Metabolite.

Introduction
Postmenopausal osteoporosis (PMOP) represents a prevalent 
metabolic bone disorder predominantly affecting women 
following menopause, marked by a reduction in bone mineral 
density and deterioration of bone microarchitecture. This 
condition substantially elevates fracture susceptibility, 
profoundly compromising patients' quality of life and 
longevity [1]. As global demographic trends shift toward 
an aging population, the prevalence of PMOP continues to 
escalate annually, emerging as a critical public health concern 
worldwide [2]. 
The pathogenesis of PMOP is complex and involves multiple 
factors, including estrogen deficiency, imbalance in bone 
metabolism, genetic factors, and lifestyle, etc. [1-3]. In recent 
years, biomarkers in blood and urine have demonstrated 
potential application value in the diagnosis, risk assessment, 
and treatment monitoring of osteoporosis [4]. For example, 
biomarkers such as alkaline phosphatase and sex hormone-
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binding globulin (SHBG) have been confirmed to be closely 
related to bone metabolism [5, 6]. However, the current 
research on the causal relationship between these biomarkers 
and PMOP is still insufficient. Most studies are only based on 
cross-sectional or observational designs, making it difficult to 
clarify the causal direction. 
Mendelian Randomization (MR) represents a robust analytical 
approach that leverages genetic variants as instrumental 
variables to infer causal associations, thereby minimizing 
the impact of confounding variables and bidirectional 
causation [7]. This methodology has gained significant 
traction in contemporary research, particularly in elucidating 
the etiological links between various biomarkers and disease 
phenotypes. The application of MR has become increasingly 
prevalent in epidemiological investigations, offering a powerful 
tool for establishing causal inference in complex biological 
systems. For example, some studies have revealed the 
causal associations between various metabolites and chronic 
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diseases such as cardiovascular diseases and diabetes 
through MR analysis [8-10]. However, there is currently a lack 
of systematic research on the causal relationship between 
blood and urine biomarkers and PMOP. 
This research employs bidirectional MR to investigate potential 
causal relationships between 35 circulating and urinary 
biomarkers and PMOP. Leveraging comprehensive datasets 
from the UK Biobank and Finnish Biobank studies, this 
investigation seeks to validate established biomarker-PMOP 
associations while potentially identifying novel diagnostic 
indicators. The findings are expected to contribute significantly 
to advancing our understanding of PMOP pathogenesis, 
offering valuable insights for diagnostic strategies and 
therapeutic interventions in this prevalent condition.

Materials and Methods
Study Design
This investigation employed a two-stage analytical approach 
to examine potential causal relationships between 35 
hematological and urinary biomarkers (n=363,228) obtained 
from the UK Biobank (UKB) [11] and PMOP data derived from 
the Finnish Biobank Study (FinnGen) [12]. The R12 dataset 
from FinnGen served as the primary test cohort, while the R11 
dataset functioned as the validation cohort. Initial screening for 
significant associations was conducted through MR analysis 
using inverse variance weighting (IVW), with biomarkers 
as exposure variables and PMOP as the outcome measure 
(significance threshold: P < 0.05). To address potential 
pleiotropic effects, MR-Egger regression was implemented, 
retaining associations with P > 0.05. Result consistency was 
subsequently verified through complementary analyses using 
the weighted median approach and Mendelian Randomization 
Pleiotropy RESidual Sum and Outlier (MR-PRESSO) testing (P > 
0.05) [13]. Associations satisfying these rigorous criteria were 
considered to provide robust evidence of causality [14].

Instrumental Variables
This investigation employed a rigorous selection process for 
genome-wide significant single nucleotide polymorphisms 
(SNPs) associated with the exposure, applying a stringent 
significance threshold (P < 5 × 10-8). To minimize potential 
confounding effects, SNPs exhibiting linkage disequilibrium 
(LD) were systematically excluded based on established 
criteria (R² < 0.001, with a clustering distance of 10,000 kb), 
while maintaining consistency in the effect allele direction. 
The instrumental variables were required to meet three 
fundamental criteria: demonstrating robust association with 
the exposure, independence from confounding variables, 
and exerting influence on the outcome exclusively through 
the exposure pathway [7, 15]. Instrumental variable strength 
was quantitatively assessed using the F statistic (F > 10) to 
eliminate weak associations [16]. Additionally, minor allele 
frequency (MAF) was derived from effect allele frequency (EAF) 
calculations, with SNPs demonstrating MAF < 0.01 being 
excluded to mitigate the impact of rare genetic variations. The 
final analytical framework incorporated comprehensive SNP 
formatting and LD pruning procedures (LD threshold 0.001, 
distance 10,000 kb) to ensure optimal analytical precision.

Statistical analysis
The causal associations between biomarkers and PMOP were 

investigated using three primary approaches: IVW method, 
weighted median method, and MR-Egger regression [7, 17]. 
Heterogeneity among the genetic instruments was assessed 
through the Cochrane Q test, with a significance threshold set 
at P < 0.05, and the appropriate model (fixed-effect or random-
effect) was selected based on the results. Horizontal pleiotropy 
was evaluated using the MR-Egger intercept test (P < 0.05), 
while potential pleiotropic SNPs were identified through leave-
one-out sensitivity analysis. To examine reverse causality, 
reverse MR analysis was conducted. Additionally, the MR-
PRESSO framework was applied to detect and remove outliers 
associated with horizontal pleiotropy (P < 0.05), complemented 
by the MR-Egger method to assess global pleiotropic effects. All 
statistical procedures were performed using the R programming 
environment (version 4.4.1).

Results
Positive MR results: 35 blood/urine metabolites as causal 
validation of the association between exposure and PMOP as 
an outcome
The results of the study showed a batch Mendelian 
randomisation analysis with a p-value of less than 0.05 for 
the inverse variance-weighted results and selection of the 
appropriate mode of interpretation based on heterogeneity. 
In the test cohort, six significant positive associations were 
identified: alkaline phosphatase (odds ratio [OR]=1.26, 95% 
confidence interval [CI]=1.09-1.45, P=0.002), glomerular 
filtration rate (OR=1.21, 95% CI=1.01-1.45, P=0.046), sex 
hormone binding globulin (OR=1.38, 95% CI=1.16-1.65, 
P<0.001), total protein (OR=1.26, 95% CI=1.10-1.56, P=0.038), 
direct bilirubin (OR=0.84, 95% CI=0.71-0.99, P=0.035), and 
uric acid (OR=0.76, 95% CI=0.64-0.91, P=0.003). In the 
validation cohort, seven significant positive associations were 
observed: alkaline phosphatase (OR=1.25, 95% CI=1.07-1.47, 
P=0.005), glomerular filtration rate (OR=1.31, 95% CI=1.08-
1.60, P=0.007), sex hormone binding globulin (OR=1.42, 
95% CI=1.18-1.72, P<0.001), total protein (OR=1.27, 95% 
CI=1.01-1.61, P=0.042), creatinine (OR=0.77, 95% CI=0.64-
0.93, P=0.007), direct bilirubin (OR=0.83, 95% CI=0.70-0.99, 
P=0.027), and uric acid (OR=0.81, 95% CI=0.67-0.92, P=0.003). 
In particular, alkaline phosphatase, glomerular filtration rate, 
SHBG, and total protein were statistically significant in both 
the test and validation sets and were risk factors for promoting 
the development of PMOP, while direct bilirubin and uric acid 
were statistically significant in both the test and validation 
sets and were protective factors for inhibiting the development 
of PMOP (Figure 1). In the MR Egger's method test, all results 
did not show pleiotropy (P>0.05), whereas MR-Presso showed 
statistically significant P-values (P<0.05) before and after 
correction for SNP at the level of pleiotropy. Detailed data are 
shown in the Supplementary Material. 

Inverse MR results: Causal validation between PMOP as 
exposure and 35 blood/urine metabolites as outcome
The results were subjected to batch MR analysis, employing 
a significance threshold of P < 0.05 for inverse variance 
weighted estimates, with the interpretation method adjusted 
according to heterogeneity levels. In the initial testing 
cohort, six significant associations were identified: alkaline 
phosphatase (OR=1.02, 95% CI=1.01-1.03, P=0.003), cystatin 
C (OR=1.20, 95% CI=1.01-1.02, P=0.017), direct bilirubin 



doi: https://doi.org/10.71321/ktnt2936

59

(OR=0.99, 95% CI=0.98-0.99, P=0.041), non-albumin proteins 
(OR=1.01, 95% CI=1.01-1.03, P=0.038), SHBG (OR=0.99, 95% 
CI=0.98-0.99, P=0.033), and total bilirubin (OR=0.98, 95% 
CI=0.97-0.99, P=0.002). In the validation cohort, four significant 
associations were confirmed: alkaline phosphatase (OR=1.02, 
95% CI=1.01-1.03, P=0.0057), C-reactive protein (OR=1.01, 95% 
CI=1.01-1.02, P=0.034), and SHBG (OR=0.98, 95% CI=0.95-
0.99, P=0.029). Among them, alkaline phosphatase was 
statistically significant in both the test and validation sets and 
was a positive outcome for the occurrence of PMOP, while 
SHBG and total bilirubin were statistically significant in both 
the test and validation sets and were a negative outcome for 
the occurrence of PMOP (Figure 2).None of the results showed 
multiplicity in the test of the MR Egger's method (P > 0.05), and 
the MR-Presso showed statistically significant P-values before 
and after correction for SNP at the level of pleiotropy (P < 0.05). 
Detailed data are shown in the Supplementary Material. 

Figure 1. Forest plot of forward MR results

regulation. Specifically, alkaline phosphatase serves as a 
crucial marker of bone turnover, with elevated concentrations 
typically indicating enhanced bone resorption and formation 
activities, potentially predisposing individuals to PMOP . 
Furthermore, alterations in SHBG concentrations may influence 
the biological activity of sex hormones, which are pivotal in the 
pathogenesis of PMOP [5, 6].
Emerging evidence from clinical investigations has identified 
several protective biomarkers, including direct bilirubin and 
uric acid, which potentially influence skeletal homeostasis 
through their roles in oxidative stress modulation and 
inflammatory pathway regulation. Among these biomarkers, 
bilirubin, a potent endogenous antioxidant metabolite, exerts 
its protective effects by neutralizing reactive oxygen species 
and reducing oxidative damage, a critical pathogenic factor 
implicated in the progression of osteoporotic conditions 
[18, 19]. The molecular mechanisms underlying bilirubin's 
protective effects involve its capacity to scavenge free radicals 
and mitigate oxidative stress-mediated bone resorption, 
thereby contributing to the maintenance of bone mineral 
density and structural integrity. In addition, uric acid, as a 
purine metabolite, also possesses antioxidant capacity, and 
its protective effect on bone may be related to the inhibition of 
inflammatory response and modulation of osteoblast activity 
[20, 21].
In reverse analyses, alkaline phosphatase, SHBG and total 
bilirubin showed causal associations with PMOP. This 
suggests that these biomarkers may not only be risk factors 
for PMOP, but may also be influenced by osteoporotic status. 
This bidirectional causality suggests that we need to consider 
the dynamics of biomarkers and their complex interactions 
with bone health in a comprehensive manner in clinical 
practice [22]. 
The bidirectional relationship between SHBG and PMOP may 
reflect a feedback loop: elevated SHBG reduces bioavailable 
estrogen, exacerbating bone loss, while osteoporosis-
induced inflammatory signals (e.g., IL-6) may further suppress 
SHBG synthesis in the liver. This hypothesis aligns with 
recent experimental evidence demonstrating IL-6-mediated 
downregulation of SHBG in hepatocyte models [23].
Notably, alkaline phosphatase was a risk factor for PMOP in 
the forward analysis and increased with PMOP in the reverse 
analysis, suggesting a possible positive feedback mechanism 
between alkaline phosphatase and PMOP. SHBG was a risk 
factor for promoting the development of PMOP in the forward 
analysis, whereas the opposite was true in the reverse analysis, 
and its level may be suppressed with the development of 
PMOP. 
Although this study used multiple Mendelian randomisation 
methods to reduce the effects of pleiotropy and confounding, 
several limitations remain. Firstly, Mendelian randomisation 
analyses rely on the strength and validity of genetic 
instrumental variables, and although we used methods 
such as the F-statistic and MR-PRESSO to assess this, there 
may still be pleiotropy that has not been fully excluded [16]. 
Secondly, only 35 biomarkers were analysed in this study, 
while other potential metabolites or biomarkers may also be 
causally associated with PMOP, and future studies need to 
further extend the analysis. While our findings provide valuable 
insights into the causal associations between biomarkers and 
PMOP, the generalizability of results may be limited by the 

Figure 2. Forest plot of inverse MR results

Discussion
This research represents the inaugural investigation into the 
bidirectional causal relationships between 35 distinct blood 
and urine biomarkers and PMOP (PMOP) through MR analysis. 
The study identified significant causal associations between 
specific biomarkers and PMOP development, offering novel 
insights into the disease's pathogenesis and establishing a 
foundation for identifying potential biomarker targets. 
Through comprehensive analyses, alkaline phosphatase, 
glomerular filtration rate, SHBG, and total protein were 
identified as significant risk factors for PMOP. Conversely, 
direct bilirubin and uric acid demonstrated protective effects 
against PMOP development. These findings align with existing 
literature on biomarker involvement in bone metabolism 
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predominantly European ancestry of participants in both UK 
Biobank and FinnGen datasets. Future studies incorporating 
diverse populations (e.g., Asian or African cohorts) are 
warranted to validate these associations across ethnic groups. 
Furthermore, it is imperative to conduct validation studies 
across multiple independent cohorts to confirm the robustness 
and reproducibility of the results, thereby enhancing their 
generalizability and reliability. 

Conclusion
In this study, the causal associations between multiple blood 
and urine biomarkers and PMOP were revealed by bidirectional 
Mendelian randomization analysis. These findings not only 
provide potential biomarker targets for the diagnosis and 
treatment of PMOP, but also provide new directions for further 
research on its pathogenesis. Future studies should further 
explore the potential mechanisms of these biomarkers and 
validate their causal associations in more populations, with 
the aim of providing a stronger basis for the prevention and 
treatment of postmenopausal osteoporosis.
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