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Background: Sarcoma (SARC) is a rare and heterogeneous cancer originating from mesenchymal tissue. Due to its complex molecular 
mechanisms and limited treatment options, patients often have poor prognoses. Protein SUMOylation is an important post-translational 
modification process that plays a key role in regulating cellular functions and is closely related to the onset and progression of various cancers. 
However, the specific mechanisms by which SUMOylation affects SARC progression are not fully understood.
Methods: In this study, comprehensive bioinformatics approaches were utilized to analyze multiple datasets of SARC samples. By screening and 
identifying SUMOylation-related genes, we further explored the expression patterns of these genes in SARC and their association with prognosis 
and then constructed a consensus prognostic model. In particular, we focused on the KIAA1586 gene, which has attracted increasing attention in 
cancer biology, and conducted an in-depth study of its role in SARC.
Results: The study revealed that 19 SUMOylation-related genes were significantly correlated with the prognosis of SARC. Subsequently, the 
consensus prognostic model constructed by ridge regression could accurately predict the survival of patients in multiple data sets. Afterward, 
we identified KIAA1586 as the key gene, and its expression level was closely related to the prognosis of patients. GSEA enrichment analysis 
demonstrated that KIAA1586 might affect the progression of SARC by regulating the cell cycle and immune-related pathways, providing new 
insights into the molecular mechanism of SARC.
Conclusion: We have constructed a SUMOylation signature model that can accurately predict the prognosis of SARC patients, and identified 
KIAA1586 as a key SUMOylation gene that plays a crucial role in the onset and development of tumors by participating in cell cycle regulation 
and immune suppression.
Keywords: SUMOylation, Sarcoma, KIAA1586, prognosis, bioinformatics.

Introduction
As a type of malignant tumor originating from mesenchymal 
tissue, sarcoma is highly heterogeneous and complex [1]. 
Epidemiologically, sarcomas are relatively rare. Current 
treatments mainly include surgery, (neo)adjuvant chemotherapy, 
and/or radiotherapy. However, the mortality rate cannot be 
ignored [2]. Due to the diverse pathological types, varied 
clinical manifestations, and significant differences in the 
responsiveness to conventional treatments of sarcomas, 
the prognosis of patients is often poor, with a survival rate of 
approximately 12 to 18 months [3]. Although certain progress 
has been made in the diagnosis and treatment of sarcomas 
in recent years, the overall survival rate still needs to be 
improved [4-6]. An in-depth understanding of the molecular 
mechanisms of sarcomas, and the search for new therapeutic 
targets and prognostic markers, are of great significance for 
improving the prognosis of sarcoma patients.
Post-translational protein modification (PTM) is an important 
regulatory mechanism that occurs in cellular proteins 
during or after translation. These modifications can alter the 
conformation, stability, hydrophobicity, and charge state of 
proteins, thus influencing their functions in various biological 

processes [7]. To date, more than 450 types of PTMs 
have been identified, including ubiquitination, acetylation, 
phosphorylation, and SUMOylation [8]. SUMOylation is a 
post-translational modification process that depends on the 
conjugation of the small ubiquitin-like modifier (SUMO) to the 
target protein. As a member of the ubiquitin-like protein family, 
SUMO weighs approximately 11 kDa and can conjugate to 
the target protein in the form of a single monomer, multiple 
monomers, or different types of polymers [9]. SUMOylation 
plays a crucial role in cellular life activities and is involved in 
regulating multiple biological processes such as transcription, 
DNA repair, cell cycle progression, and signal transduction [9]. 
Abnormal SUMOylation processes are closely related to the 
occurrence and development of various diseases, including 
cancer. In cancer, abnormal SUMOylation may lead to the 
activation of oncogenes, the inactivation of tumor suppressor 
genes, and cell cycle disorders, thus promoting the progression 
of cancer [10].
Although the role of protein SUMOylation in cancer has been 
extensively studied [11-15], the specific mechanism of its 
action in sarcoma remains unclear. As a highly heterogeneous 
type of cancer, the occurrence and development of sarcoma 
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may involve a variety of complex molecular mechanisms, 
including SUMOylation. Therefore, an in-depth exploration 
of the role of protein SUMOylation in sarcoma is of great 
significance for understanding the molecular mechanisms 
of sarcoma and identifying new therapeutic targets, and 
prognostic markers. In addition, developing personalized 
therapeutic signatures using SUMOylation-related genes also 
has potential application value for achieving individualized 
treatment of sarcoma.
This study aims to deeply explore the role of protein 
SUMOylation in the progression of sarcoma, with particular 
attention paid to the KIAA1586 gene, which has been attracting 
increasing attention in cancer biology. Through bioinformatics 
methods, we analyzed a comprehensive data set containing 
sarcoma samples to identify key SUMOylation-related genes 
and evaluate the expression pattern of KIAA1586 in sarcoma 
and its relationship with the prognosis of patients. Our study 
found that KIAA1586 plays an important role in sarcoma, 
and its expression level is closely related to the prognosis of 
patients. This novel finding not only provides a new perspective 
for understanding the molecular mechanism of sarcoma 
but also offers new ideas and potential intervention targets 
for the treatment of sarcoma. We believe that the results of 
this study will provide strong support for the individualized 
treatment of sarcoma.

Methods
Data acquisition
The TCGA data we utilized underwent rigorous standardization, 
normalization, batch correction, and platform correction 
as part of The Pan-Cancer Atlas, accessible via  https://
gdc.cancer.gov/about-data/publications/pancanatlas. We 
meticulously extracted samples from the SARC (Sarcoma) 
dataset and retrieved corresponding survival data from the 
UCSC Xena database (https://xena.ucsc.edu/). To validate 
survival outcomes, we incorporated external datasets including 
overall survival (OS) data from GSE17679 (88 tumor samples), 
GSE21257 (53 tumor samples), E-TABM-1202 (101 tumor 
samples), GSE59455 (122 tumor samples), and GSE119041 
(50 tumor samples); progression-free survival (PFS) data 
from GSE21050 (310 tumor samples), GSE71118 (312 tumor 
samples), GSE71119 (132 tumor samples), and GSE71120 
(41 tumor samples); disease-free survival (DFS) data from 
GSE17679 (also included in the OS datasets); and relapse-free 
survival (RFS) data from GSE39055 (37 tumor samples) and 
GSE30929 (140 tumor samples). By harmonizing these data 
with the expression files from the SARC dataset, we curated 
a comprehensive cohort for downstream analysis. The 17 
SUMOYLATION gene sets sourced from the MSigDB database 
(https://www.gsea-msigdb.org/gsea/msigdb) encompass 
a comprehensive range of processes related to protein 
SUMOylation. We have obtained a total of 227 genes that are 
related to SUMOylation. 

Data cleaning and preprocessing
Data cleaning steps included removing missing values and 
non-tumor samples to ensure data integrity and accuracy. 
Additionally, survival times were converted from days to 
years to standardize the time units. All validation datasets 
underwent z-score normalization to transform the data into 

a normal distribution with a mean of 0 and a variance of 1, 
eliminating dimensional differences between variables. To 
further optimize the data distribution characteristics, the 
exponential function exp was used to convert z-scores into 
their exponential form.

Identifying key genes involved in SUMOylation
We conducted univariate Cox survival analysis on overall 
survival, disease-specific survival, and progression-free interval 
using the Coxph function, and screened for intersecting genes 
that showed significant correlation across all three survival 
outcomes through a Venn diagram. 

Constructing a consensus prognostic model
We chose a linear model to model the input genes due to 
its simplicity, intuitiveness, and interpretability, which clearly 
reveals the specific contribution of each gene to prognosis. 
Multiple modeling algorithms were employed to construct 
prognostic models, including Lasso regression, Elastic Net, 
Ridge regression, stepwise Cox regression, and CoxBoost. 
Lasso regression was implemented using the glmnet package, 
with the family parameter specified as Cox and the alpha 
parameter set to 1. The cv.glmnet function was used to perform 
ten-fold cross-validation to select the optimal λ value. Model 
coefficients and feature names corresponding to the optimal 
λ value were extracted from the training results, and non-zero 
coefficients and their corresponding gene names were filtered 
out. Elastic Net and Ridge regression were also implemented 
using the glmnet package, with the alpha parameter for Elastic 
Net ranging from 0 to 1 (i.e., 0.1 to 0.9) and set to 0 for Ridge 
regression. Stepwise Cox regression involved first constructing 
a multivariate Cox regression model using the Coxph function, 
followed by stepwise regression analysis using the stepAIC 
function, with direction parameters including both, forward, 
and backward. For the CoxBoost model, we first optimized the 
penalty parameter using the optimCoxBoostPenalty function, 
then performed cross-validation using the cv.CoxBoost function 
to select the optimal number of steps. Finally, the CoxBoost 
function was used to construct the final CoxBoost model with 
the optimal number of steps and penalty parameter. Model 
coefficients and corresponding genes could be extracted using 
the coef function or obtained from the regression coefficient 
slot of the corresponding model. The linear combination of 
gene expression data and model coefficients was calculated 
to generate a risk score for each sample.

Evaluating the predictive performance of the prognostic model
The area under the receiver operating characteristic curve 
(ROC) and the area under the curve (AUC) were used as 
evaluation metrics, and the timeROC package was used 
to calculate AUC values at different time points to assess 
the performance of multiple prognostic models. Univariate 
Cox analysis was performed using the Coxph function to 
calculate the hazard ratio (HR) of the risk score calculated 
by the top-ranked algorithm across different datasets, 
followed by Meta-analysis and Kaplan-Meier survival 
analysis of the risk score.

Assessment of KIAA1586 as a key risk gene for SARC
We employed a multi-step approach for identification and 
validation. Firstly, we calculated the coefficients for each 
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gene using various algorithms and presented the results in 
a heatmap, where a coefficient of 0 indicates that the gene 
was not included in the model for a particular algorithm. 
Next, we conducted a univariate Cox survival analysis for 
KIAA1586 and performed a meta-analysis using the inverse 
variance method, with the log-hazard ratio (HR) as the primary 
measure. The HR indicates the tendency of the gene's effect, 
with values less than 1 suggesting a tumor-suppressive effect 
and values greater than 1 indicating a pro-oncogenic effect. 
Statistical analyses and visualizations were performed in 
the R environment using the "Meta" package. Additionally, 
we reflected the activity of given pathways by integrating 
characteristic gene expression, calculating combined z-scores 
for 14 different functional states of tumor cells based on 
the z-score algorithm. These scores were standardized and 
defined as gene set scores, followed by the calculation of 
Pearson correlations between KIAA1586 and each gene set 
score. Finally, to further explore the relationship between 
KIAA1586 expression levels and patient survival rates, we 
performed a Kaplan-Meier survival analysis using the survival 
package. The optimal cutoff value for distinguishing between 
high and low-expression cohorts was determined using the 
R package "survminer," ensuring that the proportion of high 
and low-expression groups was no less than 30% of the total 
sample. The log-rank test was used to assess the significance 
of survival differences between the two groups. DEPMAP 
(Cancer Dependency Map) is a research project aimed at 
creating a detailed map of cancer cell dependencies. CERES 
stands for CRISPR Essentiality Screen, a method used to 
quantify gene essentiality in cancer cells. The CERES score is 
an indicator derived from this method, reflecting the impact 
of gene knockout on cell survival or proliferation. A negative 
CERES score indicates that knockout of the gene leads to 
growth arrest or death of cancer cells, typically implying that 
the gene is crucial for the survival or proliferation of cancer 
cells. We have identified the top 200 cancer cell lines with 
negative CERES scores.

Exploring the carcinogenic pathway of KIAA1586.
This study initially classified samples into high and low-
expression groups based on the expression level of the 
KIAA1586 gene, with the top 30% of expressers designated 
as the high-expression group and the bottom 30% as the 
low-expression group. Subsequently, the limma package 
was utilized to perform differential analysis, calculating the 
log2 fold change (log2FC) for each gene and ranking all 
genes according to their log2FC values. Following this, the 
clusterProfiler package was employed to conduct gene set 
enrichment analysis based on KEGG gene sets, GO-BP gene 
sets, GO-MF gene sets, GO-CC gene sets, Reactome gene sets, 
and WikiPathways gene sets, computing the enrichment score 
(ES) for each gene set and performing significance testing 
and multiple hypothesis testing on the ES values. To validate 
whether the cell cycle was enriched in the KIAA1586 high 
expression group (using the median value as the cutoff), we 
downloaded the cell cycle gene set from the MsigDB database 
(https://www.gsea-msigdb.org/gsea/msigdb/human/geneset/
WP_CELL_CYCLE) and conducted gene set enrichment 
analysis, calculating the ES and performing significance testing 
and multiple hypothesis testing. Additionally, the PROGENy 

method from the easier package was used to compute scores 
for four immune-related pathways: JAK-STAT, NF-κB, TNF-α, 
and Trail. The specific features of these pathways were derived 
from studying gene expression changes during pathway 
perturbation experiments, and a linear regression model was 
employed for fitting. Finally, across multiple cohorts, various 
algorithms (including CIBERSORT, CIBERSORT ABS, EPIC, 
ESTIMATE, MCP-counter, Quantiseq, TIMER, and xCell) were 
applied to calculate the Spearman correlation between the 
KIAA1586 gene and different immune infiltrating cells.

Verifying the immunosuppressive potential of KIAA1586
To delve into the intrinsic relationship between KIAA1586 
and immune-related expression signatures, we meticulously 
obtained a valuable dataset encompassing 68 published 
immune-related expression features from the USCS Xena 
database. To precisely assess the correlation between 
KIAA1586 gene expression and these immune features, 
we skillfully employed the cor.test function in R to conduct 
detailed, pairwise correlation calculations between KIAA1586 
expression levels and each immune-related feature and 
carefully extracted the Spearman correlation coefficients 
along with their corresponding p-values. To visually present 
the results of this correlation analysis, we cleverly utilized 
the hplot1 function from the fromto package to craft a vivid 
heatmap. Immune regulatory molecules play a pivotal role 
in cancer immunotherapy, and numerous agonists and 
antagonists of these molecules are undergoing rigorous 
evaluation in clinical oncology. To advance this research, there 
is an urgent need to understand the expression patterns and 
regulatory mechanisms of these molecules under different 
KIAA1586 states. To this end, we comprehensively investigated 
the expression of immune regulatory molecules, somatic copy 
number alterations (SCNA), and expression regulation through 
epigenetic pathways. To accurately assess MeTIL signatures, 
we adopted a principal component analysis (PCA) approach, 
skillfully converting individual methylation values of MeTIL 
markers into unitless MeTIL scores [16]. We standardized the 
data into Z-scores using the formula (x-μ)/σ and divided the 
samples into high and low-expression groups based on the 
median value of KIAA1586. Subsequently, we employed the 
Wilcoxon Rank Sum Tests to rigorously compare the statistical 
differences in MeTIL scores between the two groups. 
Furthermore, we adopted Spearman correlation analysis to 
meticulously calculate the correlation between genes and TIP 
scores, as well as the autocorrelation between TIP scores and 
utilized the linkET package for intuitive visualization [17].

Visualization and correlation analysis of gene expression in 
pan-cancer single-cell data
We obtained gene expression files at pan-cancer single-
cell resolution from the TISCH database and constructed 
heatmaps using the pheatmap package to visualize the 
gene expression landscape at the pan-cancer single-cell 
level. Hierarchical clustering was performed using Euclidean 
distance as the metric and Ward's minimum variance method, 
which helped us to more clearly identify patterns and trends 
in the data and assess the conservation of KIAA1586 
expression sources. For visualization of the gene expression 
data, we employed the Uniform Manifold Approximation and 
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Projection (UMAP) dimensionality reduction technique to 
display the distribution of cell types. For the visualization 
of single-cell transcriptome genes, we used the Nebulosa 
package. Due to the presence of numerous dropout events in 
single-cell transcriptome data, some genes have expression 
levels of zero or near-zero, even for marker genes. The 
Nebulosa package estimates weighted kernel densities, 
incorporates similarities between cells, and allows for the 
convolution of cellular features, thereby recovering lost gene 
signals and better presenting single-cell data. In addition, we 
calculated the average expression levels of KIAA1586, MKI67, 
CENPF, and PCNA in each single-cell dataset from the TISCH2 
database, and used Spearman correlation analysis to assess 
the correlations between KIAA1586 and these three genes 
(MKI67, CENPF, PCNA).

Pan-cancer spatial transcriptome analysis revealed KIAA1586 
expression landscape
Using the Sparkle database (https://grswsci.top/) and 
SpatialTME (https://www.spatialtme.yelab.site/) ,  we 
conducted a pan-cancer spatial transcriptomics analysis [18]. 
The SpatialTME database utilized the Cottrazm package 
to deconvolute the cellular composition of the tumor 
microenvironment (TME) [19]. The Sparkle database integrated 
10xVisium sequencing data from the SpatialTME database 
to construct a pan-cancer spatial transcriptomics atlas. 
Based on the proportion of cell types in each microregion, 
we named or characterized the microregions according to 
the dominant cell type and used a heat map to display the 
expression landscape of KIAA1586 across different cellular 
microregions. Subsequently, we selected sections from five 
tumors for further analysis. We presented the tissue sections, 
localized the dominant cell types after deconvolution, and 
identified the tumor boundaries. Additionally, we calculated the 
Spearman correlation between KIAA1586 expression and the 
proportion of different cell types in the microregions, as well 
as the difference in KIAA1586 expression among tumor, tumor 
boundary, and normal groups.

KIAA1586 expression and subcellular localization analysis
We systematically analyzed the immunohistochemistry 
staining results of KIAA1586 in various tumor tissues from the 
HPA database. HPA categorizes the staining intensity into four 
levels: High, Medium, Low, and Not detected, and we calculated 
the proportion of each level in detail. To more intuitively 
demonstrate the expression of KIAA1586 in specific tumors, 
we specifically selected immunohistochemistry staining 
sections of breast cancer and ovarian cancer for display. In 
addition, to further investigate the localization of KIAA1586 
within cells, we conducted KIAA1586 immunofluorescence 
experiments using three cell lines (A-431, U-251MG, and U2OS) 
from the HPA database. By observing the immunofluorescence 
staining results, we visualized the subcellular localization of 
KIAA1586 within the cells.

Delve into the transcription and regulation of KIAA1586
We made use of Cistrome DB, also referred to as the Cistrome 
Data Browser, an interactive database that facilitates the 
visualization of public ChIP-seq, DNase-seq, and ATAC-
seq data [20-21]. With the robust support of the extensive 

Cistrome DB database, the Toolkit enables users to swiftly 
test their hypotheses regarding gene regulation using publicly 
available ChIP-seq data (for protein factors and histone 
marks) and chromatin accessibility data (DNase-seq and 
ATAC-seq). The Cistrome DB Toolkit website provides three 
core functionalities. It leverages the BETA algorithm [22] to 
compute a regulatory potential (RP) score, which gauges the 
probability of a factor regulating a gene. For ChIP-seq, DNase-
seq, or ATAC-seq samples, BETA adopts a distance-weighted 
method to assess the regulatory potential of all binding sites 
of the factor within a specified distance from the target gene. 
Factors with high RP scores are likely candidates for regulating 
the given gene. We downloaded the potential regulatory scores 
for specific transcription factors from http://dbtoolkit.cistrome.
org/  and utilized the ggplot2 package for visualization. 
Pearson correlation analysis was applied to evaluate the 
correlation between transcription factors and KIAA1586. To 
examine the correlation between copy number variation scores 
and gene expression levels, we employed scatter plot analysis 
in conjunction with the Spearman rank correlation coefficient. 
A scatter plot serves as a graphical depiction that intuitively 
illustrates the relationship between two variables, enabling 
us to discern whether a linear or nonlinear relationship exists 
between them. Meanwhile, the Spearman rank correlation 
coefficient constitutes a non-parametric statistical method 
used to measure the monotonic relationship between 
two variables, irrespective of the data distribution. The 
Spearman rank correlation coefficient spans from -1 to 1, 
with values nearer to 1 or -1 indicating a more pronounced 
correlation, and the p-value is utilized to ascertain the 
significance of this correlation.

Results
Nineteen key SUMOylation Genes were identified and a robust 
SUMOylation signature was constructed
The Venn diagram reveals that there are 19 genes, specifically 
UBE2I, NDC1, SEC13, RELA, TOLLIP, UHRF2, AURKA, AURKB, 
BLM, CDCA8, CTBP1, DNMT3B, H4C2, MDC1, MRTFA, NFKB2, 
NR3C2, SATB1, and KIAA1586, that exhibit significant 
associations across multiple survival metrics (Figure 1A). 
Supplementary Figure 1 presents a forest plot displaying the 
results of univariate Cox analyses for SUMOylation-related 
genes in terms of overall survival, disease-specific survival, 
and progression-free survival. The heatmap presents the 
average AUC values at 1, 3, and 5 years for prognostic models 
constructed using different algorithms, with the algorithms 
ranked from highest to lowest average AUC values. The 
top-performing algorithm, Ridge Regression, exhibits the 
best performance across multiple datasets (Figure 1B). 
The meta-analysis results synthesize the findings of the 
Ridge Regression model across different survival outcomes 
in multiple datasets, enhancing statistical power and the 
reliability of the conclusions. The results indicate that the 
Ridge Regression model is a significant risk factor for various 
survival outcomes across multiple datasets (Figure 1C). Figure 
1D-F present the Kaplan-Meier (KM) survival analysis results 
of the Ridge Regression model across different datasets, 
demonstrating that patients in the high-score or high-risk group 
have poorer prognoses (p < 0.05).
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Figure 1. Identification of Key SUMOylation Genes and Construction of a Prognostic Prediction Model. (A) Presents 19 intersecting genes that 
exhibited significant correlation across overall survival, disease-specific survival, and progression-free interval, screened through univariate Cox 
survival analysis. (B) Comparison of the average AUC values at 1, 3, and 5 years for prognostic models constructed using different algorithms: 
This heatmap displays the average AUC (Area Under the Curve) values at 1, 3, and 5 years for prognostic models built with various algorithms. 
The algorithms are ranked from top to bottom based on their average AUC values, with the top-performing algorithm exhibiting the highest 
average AUC across multiple datasets. This ranking aids in identifying the most stable prognostic model algorithm over time. (C) Meta-
analysis results of the hazard ratios for the prognostic model are presented, which helps synthesize findings from multiple independent studies, 
enhancing statistical power and the reliability of conclusions. (D) Kaplan-Meier survival analysis results for the final prognostic model, namely the 
Ridge Regression model, are shown, revealing a significant difference between the high-risk and low-risk groups.

A
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KIAA1586 is a risk gene for SARC
Across all models, KIAA1586 exhibited remarkable consistency 
with positive coefficients, indicating that higher expression 
levels contribute to increased risk scores, suggesting that 
KIAA1586 is a risk gene for SARC (Figure 2A). The results of 
the meta-analysis revealed that the combined HR for KIAA1586 
was 1.23, with a 95% confidence interval ranging from 1.11 to 
1.37, confirming KIAA1586 as a risk gene for SARC, despite 
moderate heterogeneity observed across different survival 
outcomes (Figure 2B). Pearson correlation analysis uncovered 
associations between KIAA1586 expression levels and multiple 

cancer-related gene set scores, particularly showing significant 
positive correlations with cell cycle, DNA damage, and repair 
pathways (Figure 2C). Kaplan-Meier survival analysis further 
substantiated the significant link between KIAA1586 expression 
levels and the prognosis of SARC patients, demonstrating a 
consistent pattern across 10 survival cohorts where higher 
expression was associated with poorer outcomes, reinforcing 
the evidence that KIAA1586 is a risk gene. Supplementary Figure 
2 suggests that KIAA1586 has a negative CERES score in a large 
number of cell lines, implying that knockout of KIAA1586 leads 
to growth arrest or death of these cell lines.

Figure 2. Identification and Validation of KIAA1586 as a Key Risk Gene for SARC. (A) The heatmap presents the coefficients of each gene across 
multiple algorithms, with a coefficient of 0 indicating that the gene was not involved in the model construction. (B) The results of the meta-analysis 
reveal the combined log-HR value from the univariate Cox survival analysis of KIAA1586, suggesting its role as a risk gene for SARC. (C) Dataset 
from the CancerSEA database, combined with the z-score algorithm, were used to calculate the combined z-scores reflecting 14 functional states of 
tumor cells, and their correlation with KIAA1586 expression. (D) The Kaplan-Meier curves illustrate the survival distribution of SARC patients grouped 
by KIAA1586 expression levels, with the log-rank test assessing the significance of survival differences between the two groups.

A
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Figure 3. Impact of KIAA1586 Expression 
L e v e l s  o n  G e n e  E x p r e s s i o n  P a t t e r n s 
and Pathway Activity. (A) The pathways 
significantly enriched in the KIAA1586 high-
expression group are represented in red, while 
those enriched in the low-expression group 
are shown in blue. A more significant p-value 
indicates a greater number of enriched genes, 
resulting in a longer bar graph. Additionally, 
a semantic summary of each pathway is 
provided. (B) The distribution of the top five 
significantly enriched pathways from the GO 
and Reactome/Wikipathways databases in 
the KIAA1586 high/low-expression groups is 
illustrated. Different colors represent distinct 
gene sets. Bars pointing to the left indicate 
significant enrichment in the low-expression 
group, whereas bars pointing to the right 
signify enrichment in the high-expression 
group. (C) The enrichment of gene sets at 
the top indicates that the core molecules 
within the custom gene set are primarily 
concentrated in the high-expression group 
on the left side of the KIAA1586 spectrum. 
This suggests that the target pathways are 
significantly enriched, and thus activated, 
in the high-expression group, while they are 
inhibited in the low-expression group. (D) 
A box plot compares the Z-Score values of 
four key immune pathways in the KIAA1586 
high/low-expression groups, reflecting the 
relative activity of these pathways in different 
expression groups. (E) A heatmap presents 
the Spearman correlation between KIAA1586 
and various types of immune infiltrating cells, 
highlighting its negative correlation with 
tumor-killing immune cell components. Red 
represents a positive correlation, blue indicates 
a negative correlation, and squares denote 
significant correlations (p < 0.05); otherwise, 
the correlation is considered insignificant.

KIAA1586 is involved in tumor progression by participating in 
cell cycle and inhibiting immunity
Gene Set enrichment analysis revealed significant differences 
in biological processes and pathways between the high and 
low-expression groups of KIAA1586 (Figure 3A, B). Specifically, 
cell cycle-related pathways were significantly enriched in 
the high-expression group of KIAA1586, whereas immune-
related pathways were more prominently enriched in the low-
expression group. These findings suggest that the expression 
level of KIAA1586 may play a regulatory role in cellular 
proliferation and immune responses. To further validate these 
observations, we conducted an independent enrichment 
analysis focusing on the cell cycle gene set, which was 
corroborated by external datasets (Figure 3C). This analysis 
reaffirmed the association between high KIAA1586 expression 

and increased cell cycle activity. Moreover, the scoring of four 
key immune signaling pathways—JAK-STAT, NF-κB, TNF-α, 
and Trail—indicated higher activity levels in the low-expression 
group of KIAA1586 (Figure 3D). This suggests that reduced 
expression of KIAA1586 may enhance immune system 
activation. Finally, Spearman correlation analysis provided 
additional support, demonstrating a negative correlation 
between KIAA1586 and components of the immune cells with 
tumor-killing functions (Figure 3E). This not only underscores 
the potential immunosuppressive capability of KIAA1586 
but also highlights its importance as a potential target for 
cancer therapy. Collectively, our analyses offer new insights 
into the role of KIAA1586 in tumorigenesis and development, 
suggesting it could be a critical factor influencing immune 
reactions within the tumor microenvironment.

A
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KIAA1586 expression correlates with immune regulation and 
suggests potential as an immunotherapy target
Through in-depth exploration using Spearman correlation 
analysis, we revealed a widespread and significant negative 
correlation between KIAA1586 expression and various immune-
related features, strongly suggesting that KIAA1586 may play 
a crucial role in the immune regulation process (Figure 4A). To 
provide a more comprehensive picture, we meticulously mapped 
the expression profile of immune regulatory molecules, somatic 
copy number alterations (SCNA), and the expression landscape 
regulated by epigenetic mechanisms (Figure 4B). The results 
indicated that the expression levels of immune molecules were 
significantly elevated in samples with KIAA1586 expression 
levels in the top 25% and between 25% and 50%. Based on 
previous research findings, we know that the median MeTIL 

score is significantly higher in tumors enriched with functional 
cytotoxic T lymphocytes (CTLs), establishing MeTIL score as 
a valid indicator for assessing CTL function. Further analysis 
showed that the MeTIL score was significantly lower in the 
KIAA1586 high-expression group, implying a close association 
between high KIAA1586 expression and diminished CTL function 
(Figure 4C). Additionally, we found that multiple immune scores, 
including CYT, also exhibited a decreasing trend in the KIAA1586 
high-expression group (Figure 4D-G). More notably, there was a 
significant correlation between KIAA1586 expression and the 
scores of cancer immune steps (Figure 4H). These findings 
not only provide strong support for our in-depth exploration of 
KIAA1586 as a potential target for immunotherapy but also open 
up new research avenues and therapeutic strategies in the field 
of cancer treatment.

Figure 4. Validation of KIAA1586's Immunosuppressive Characteristics. (A) The heatmap depicts the Spearman correlation coefficients between 
specific genes and immune features. A larger absolute value of the correlation coefficient is represented by a deeper color, with shades closer to 
blue indicating negative correlation and otherwise indicating positive correlation. (B) Regulation of immune modulators. KIAA1586 expression is 
divided into quartiles: Q1, Q2, Q3, and Q4. Each component of the heatmap is arranged from left to right. mRNA expression levels are represented 
by the median of standardized expression values. The "Expression vs. Methylation" section shows the correlation between gene expression 
and DNA methylation β-values. Amplification frequency represents the difference between the proportion of samples with amplification of 
the immune modulator in a specific subtype and the proportion across all samples. Deletion frequency indicates the difference between the 
proportion of samples with deletion of the immune modulator in a specific subtype and the proportion across all samples. (C-G) Comparison 
of immune scores, including MeTIL, Tcell_inflamed, CYT, and TLS levels, between KIAA1586 high- and low-expression groups. The distribution 
of immune score levels for individual samples in the high- and low-expression groups is provided above each plot. The ends of the boxes below 
each plot represent the interquartile range of the values. The line within each box indicates the median value. Wilcoxon Rank Sum Tests were 
performed to compare the statistical differences in expression levels between the two groups.

A
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Figure 5. Expression of KIAA1586 in Malignant Cells and Its Co-expression with Proliferation Genes. (A) The heatmap visually presents 
the relative expression of KIAA1586 across different datasets and cell types. We observe a striking consistency in the expression pattern 
of KIAA1586 across different tumor types or datasets: it is predominantly highly expressed in malignant cells, demonstrating a significant 
advantage over immune cells. (B-C) In the osteosarcoma dataset, we employed UMAP dimensionality reduction technique to vividly illustrate 
the distribution of cells and genes. The results show that regions with higher expression of KIAA1586 highly overlap with malignant cell clusters, 
further confirming the specific expression of KIAA1586 in malignant cells. (D-F) The scatter plots clearly display the Spearman correlation 
between the average expression levels of KIAA1586 and the three proliferation genes, MKI67, CENPF, and PCNA, in each single-cell dataset. This 
result once again demonstrates the close association between KIAA1586 and proliferation genes.

KIAA1586 was expressed in malignant cells and co-expressed 
with proliferation genes
Our analysis revealed that KIAA1586 is predominantly 
expressed in malignant cells, demonstrating a significant 
advantage over immune cells (Figure 5A). To further explore 
the distribution of cell types and gene expression patterns, we 
employed the Uniform Manifold Approximation and Projection 
(UMAP) dimensionality reduction technique for visualizing the 
gene expression data. UMAP illustrated the distribution of cells 
and genes, clearly showing higher expression of KIAA1586 

in clusters associated with malignant cells (Figure 5B-C). 
Additionally, we calculated the average expression levels of 
KIAA1586, MKI67, CENPF, and PCNA in each single-cell dataset 
from the TISCH2 database, and used Spearman correlation 
analysis to assess the correlation between KIAA1586 and 
these three proliferation-related genes. The results indicated 
a significant positive correlation between KIAA1586 and the 
three proliferation genes at the pseudo-bulk level, further 
confirming our previous findings that KIAA1586 is associated 
with proliferation (Figure 5D-F).

A
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KIAA1586 expression predominant in malignant regions of 
tumors
KIAA1586 Predominantly Expressed in Malignant Regions 
(Supplementary Figure 3). In spatial transcriptomics sections 
of breast cancer, clear cell renal carcinoma, hepatocellular 
carcinoma, ovarian cancer, and cutaneous melanoma, we 
observed a significant positive correlation between KIAA1586 
expression and the proportion of malignant cells in the 

microregions, while a negative correlation was noted with other 
components, particularly immune cell content. Furthermore, 
we found that KIAA1586 expression exhibited a gradient 
decrease from tumor regions to tumor boundaries, and finally 
to normal regions (Figure 6A-E). These consistent results 
indicate that the deregulated expression of KIAA1586 and its 
resulting biological effects in the tumor microenvironment can 
be attributed to malignant cells.

Figure 6. Predominant Expression of KIAA1586 in Malignant Regions of Tumors. (A-E) Each row of images is derived from breast cancer, clear 
cell renal carcinoma, hepatocellular carcinoma, ovarian cancer, and cutaneous melanoma, respectively. Each row contains six images, from left to 
right: 1) Tissue section serving as a blank control; 2) Each scatter point represents a microregion, named after the most abundant cell type, with 
different cell types represented by different colors; 3) Tumor boundary analysis, with different microregion types represented by different colors; 
4) Each dot represents a spot from spatial transcriptomics sequencing, with deeper red indicating higher expression of the gene in that spot; 
5) Correlation analysis, where red lines indicate positive correlation, green lines indicate negative correlation, gray lines indicate no significant 
correlation, and line thickness represents the absolute value of the correlation coefficient; the correlation in the triangular region is represented 
by the color intensity and size of the squares, with red indicating positive correlation, blue indicating negative correlation, and more significant 
p-values resulting in darker colors, larger absolute correlation coefficients, and larger squares; 6) Microregion differential analysis, with different 
groups represented by different colors, and the height of the bars representing the average expression level of each group, with differences 
analyzed using the Wilcoxon rank-sum test.

A
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Figure 7. Comprehensive Analysis of KIAA1586 Expression and Localization in Different Tumor Tissues and Cell Lines. (A) The x-axis represents 
different tumor types, and the y-axis indicates the proportion of different staining intensities within a specific tumor. (B-C) Immunohistochemistry 
staining sections are presented, with darker brown indicating higher expression levels of KIAA1586. (D-E) Immunofluorescence staining sections 
are shown, with green fluorescence representing the target protein KIAA1586 and red fluorescence representing the microtubule structure.

Expression and localization analysis of KIAA1586 in different 
tumors and cell lines.
As illustrated in Figure 7A, the expression levels of KIAA1586 
vary across different tumor tissues. In tissues such as breast 
cancer, colorectal cancer, and ovarian cancer(Figure 7B-C), 
the expression distribution of KIAA1586 ranges from high to 
not detected. For instance, in breast cancer, 27% of the cases 
exhibit high expression, while 58% show medium expression, 
and the rest fall into other categories. Furthermore, in the A-431, 
U-251MG, and U2OS cell lines, KIAA1586 is primarily localized 
to the nucleoplasm and nuclear membrane(Figure 7D-F).

HDAC2 is a potential regulator of KIAA1586 expression in 
Sarcomas
The Cistrome DB database suggests that HDAC2 serves as a 
potential transcriptional regulator of KIAA1586. Additionally, 
there exists a correlation between the mRNA levels of these 
two genes, with a correlation coefficient of 0.31. In sarcomas 
(SARC), the Spearman's rank correlation coefficient between 
the copy number score of KIAA1586, as calculated by Gistic2, 
and its mRNA expression level is 0.45. This indicates that the 
expression of KIAA1586 in sarcomas is influenced by copy 
number variations(Supplementary Figure 4A-C).

A
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Discussion
In this study, through comprehensive bioinformatics analysis, 
we deeply explored the role of protein SUMOylation in cancer 
progression, with a particular focus on SARC. Using the 
TCGA dataset and an external validation cohort, after careful 
data extraction and preprocessing, we identified 19 key 
SUMOylation-related genes. These genes showed significant 
correlations with multiple survival indicators, highlighting their 
importance in prognosis. Among these genes, KIAA1586 stood 
out as an important risk gene for SARC. This was confirmed 
by the consistent positive coefficients of KIAA1586 in various 
prognostic models and the results of meta-analysis.
We established a consensus prognostic model that includes 
19 genes, namely AURKA, BLM, MRTFA, NR3C2, RELA, TOLLIP, 
NFKB2, UBE2I, NDC1, SEC13, UHRF2, AURKB, CDCA8, CTBP1, 
DNMT3B, H4C2, MDC1, SATB1, and KIAA1586. It is noteworthy 
that the risk coefficients of AURKA, BLM, MRTFA, NR3C2, 
RELA, TOLLIP, and NFKB2 are negative, indicating that these 
are protective genes. The risk coefficients of the remaining 
genes are positive, meaning that these are risk genes. Most 
of these genes have been found to be risk factors for multiple 
tumors or to be associated with tumor progression. UBE2I is 
upregulated in various cancers and is associated with cancer 
progression and poor prognosis. In hepatocellular carcinoma, 
the high expression of UBE2I is related to the enhanced 
migration and invasion ability of tumors. The deletion of 
UBE2I can significantly inhibit the migration and invasion of 
hepatocellular carcinoma cells [23]. AURKB plays an important 
role in the process of cell mitosis. Its abnormal expression is 
closely related to the occurrence and development of tumors. 
In some cancers, the high expression of AURKB is related 
to the proliferation of tumor cells and poor prognosis [24]. 
NDC1 promotes hepatocellular carcinoma tumorigenesis 
by targeting BCAP31 to activate PI3K/AKT signaling [25]. 
UHRF2 promotes hepatocellular carcinoma progression by 
upregulating the ErbB3/Ras/Raf signaling pathway [26], and it 
also promotes intestinal tumorigenesis through stabilization 
of TCF4 mediated Wnt/β-catenin signaling [27]. CDCA8 
facilitates tumor proliferation and predicts a poor prognosis 
in hepatocellular carcinoma. Additionally, KIF18B promotes 
the proliferation of pancreatic ductal adenocarcinoma via 
activating the expression of CDCA8. Moreover, a cell cycle-
regulated chromosomal passenger protein with aberrant 
expression and nuclear accumulation is linked to poor 
prognosis for gastric cancer [28-30]. However, there are few 
studies on KIAA1586, and we have carried out key analysis and 
exploration.
The importance of KIAA1586 in cancer biology is further 
supported by its association with key cancer-related pathways, 
particularly the cell cycle and DNA damage repair pathways. 
Cancer is a group of diseases in which cells continue to divide 
excessively. Cancer-related mutations that disrupt cell cycle 
control achieve continuous cell division mainly by impairing the 
ability of cells to exit the cell cycle [31]. Gene Set Enrichment 
Analysis shows that high expression of KIAA1586 is significantly 
correlated with increased cell cycle activity. Through spatial 
transcriptomics and single-cell transcriptomics analyses, we 
found that KIAA1586 is mainly expressed in malignant tumor 
cells and has a significant positive correlation with proliferation-
related genes such as MKI67, CENPF, and PCNA. This indicates 

that KIAA1586 may influence cancer progression by promoting 
the proliferation of tumor cells. In addition, the high expression 
of KIAA1586 in the malignant regions of tumors further supports 
its central role in cancer development.
The JAK-STAT signaling pathway serves as a pivotal regulator 
of immune homeostasis [32]. NF-κB transcription factors 
play a central role in regulating immunity and inflammation 
[33]. Anticancer immune surveillance and immunotherapies 
initiate the activation of cytotoxic cytokine signaling, 
encompassing the tumor necrosis factor alpha (TNF-α) and 
TNF-related apoptosis-inducing ligand (TRAIL) pathways [34]. 
Conversely, KIAA1586 is negatively correlated with immune-
related pathways such as JAK-STAT, NF-κB, TNF-α, and Trail. 
This suggests that KIAA1586 may affect cancer progression 
by suppressing the immune response. In terms of immune 
regulation, our study shows that the expression of KIAA1586 
is widely and significantly negatively correlated with various 
immune-related features, indicating that KIAA1586 may play an 
important role in the process of immune regulation. According 
to previous research, in tumors enriched with functional 
cytotoxic T lymphocytes (CTLs), the median MeTIL score is 
significantly higher, indicating that the MeTIL score serves as 
a measure of CTL function [16]. Conversely, the MeTIL score is 
lower in the group with high KIAA1586 expression. This finding 
implies a close association between KIAA1586 and weakened 
CTL function, further underscoring the potential of KIAA1586 
as a target for immunotherapy. Through further analysis of 
the expression profiles of immunomodulatory molecules, 
we provided more evidence for the role of KIAA1586 in 
immunosuppression.
Notably, our study also revealed the possibility of HDAC2 
being a potential transcriptional regulator of KIAA1586. This 
regulatory relationship was not only verified at the mRNA 
level but also further supported by the correlation between 
copy number variations and the expression of KIAA1586. 
This finding provides a new perspective for understanding 
the abnormal expression of KIAA1586 in cancer and offers 
potential intervention targets for future research.
In summary, through multi - dimensional bioinformatics 
analysis, this study has deeply revealed the crucial role of 
KIAA1586 in SARC and its potential immunosuppressive 
mechanisms. These findings not only provide a new 
perspect ive  for  understanding  cancer  progress ion 
but also offer a scientific basis for the development of novel 
therapeutic strategies. In the future, research on KIAA1586 and 
its regulatory network may bring new breakthroughs in cancer 
treatment.

Conclusions 
In this study, bioinformatics analysis showed that KIAA1586 
was an important risk gene for SARC, and its high expression 
was associated with poor prognosis of patients. KIAA1586 
affects sarcoma progression by promoting cell proliferation 
and inhibiting immune response. Spatial transcriptomics 
and single-cell analysis showed that KIAA1586 was mainly 
expressed in malignant tumor cells and positively correlated 
with proliferation genes. In addition, we found that HDAC2 
may be a transcriptional regulator of KIAA1586. These 
findings provide new ideas for the treatment of sarcomas 
and a scientific basis for the development of new therapeutic 
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strategies for KIAA1586.
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