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Abstract

Background: Testicular cancer (TC) is the most common solid malignancy in young men, and the causal relationship between height and TC re-
mains controversial to date.

Methods: We applied a two-sample Mendelian randomization (MR) framework using large-scale genome-wide association study summary sta-
tistics to estimate the causal effect of adult height on TC risk. This was supported by LD Score regression, stringent instrument selection, and an
extensive sensitivity portfolio. Cohort-specific estimates were pooled via random-effects meta-analysis. Mechanistic inference included gene-set
enrichment and an integrated Summary-data-based Mendelian Randomization (SMR)-colocalization pipeline to prioritize susceptibility genes.
Results: Height was causally associated with higher TC risk in two independent cohorts (OR 1.384, 95% Cl 1.029-1.861; P<0.05) and in meta-anal-
ysis (pooled OR 1.354, 95% Cl 1.112-1.644), with concordant directions across robustness estimators, no evidence of directional pleiotropy, and
minimal heterogeneity. Bidirectional MR found no reverse effect of TC liability on height (P>0.05), and regional colocalization did not support
shared causal variants between height and TC signals (PP.H4<0.50). Enrichment implicated a height-chondrogenesis-extracellular matrix-TGF-B/
SMAD-endocrine axis. SMR and colocalization convergently nominated PMF1 (PP.H4=0.80) and SLC9B2 (PP.H4=0.95) as susceptibility genes
with high posterior support across cohorts.

Conclusion: Genetically proxied height confers a modest but robust increase in TC risk, and PMF1 and SLC9B2 emerge as plausible mediators at

colocalized regulatory loci.

Keywords: Height; Testicular cancer; Mendelian randomization; Bayesian colocalization; Susceptibility gene.

Introduction

Testicular cancer (TC) ranks as the most common solid tumor
among males aged 15-44 years, comprising approximately
1-2% of all male malignancies worldwide [1]. In 2025, the Unit-
ed States is expected to report nearly 9,720 new cases and
about 600 deaths, with a median age at diagnosis of 33 years.
Incidence has risen steadily over recent decades, particularly
in high-income regions: Western and Northern Europe exhibit
the highest age-standardized incidence rates-8.7 and 7.2 per
100,000 men, respectively-while projections suggest a 24% in-
crease in Europe by 2025 compared to 2005 levels [2,3]. Estab-
lished risk factors encompass cryptorchidism, a positive family
history, prior testicular pathology, and hormonal imbalances [4].
Epidemiological analyses indicate that each 5 cm increment in
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adult height correlates with a roughly 13% elevation in TC risk.
Environmental and lifestyle exposures-such as cannabis use,
agricultural chemicals, and occupational hazards-have also
been implicated, though findings remain inconsistent [5,6].
Conventional observational studies, while foundational, often
struggle with residual confounding, measurement error, and
reverse causation. For example, analyses based on SEER
registry data cannot disentangle whether height causally in-
fluences tumorigenesis or merely reflects early life nutritional
and socioeconomic conditions. Consequently, the causal link
between stature and TC remains unresolved [6].

Mendelian randomization (MR) offers a powerful alternative
by employing germline variants associated with height as
instrumental variables. This approach leverages the random
assortment of alleles at conception to mitigate confounding
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and reverse causation, paralleling randomization in controlled
trials, thus strengthening causal inference [7-9]. Moreover,
summary-data-based MR (SMR) integrates genome-wide as-
sociation study (GWAS) and expression quantitative trait loci
(eQTL) data to colocalize genetic signals, pinpoint susceptibili-
ty genes, and nominate therapeutic targets [10-12].

Here, we apply state-of-the-art two-sample MR using extensive
GWAS meta-analyses of adult height and TC, aiming to resolve
the causal role of height in tumor risk. Concurrently, SMR anal-
ysis interrogates GWAS and eQTL summary statistics to iden-
tify and prioritize genes whose expression mediates testicular
carcinogenesis.

Methods and Materials

Study Design

Genome-wide linkage disequilibrium (LD) score regression
was used to characterize polygenicity and residual confound-
ing and to estimate the genetic correlation between adult
height and TC across cohorts. A two-sample MR framework
based on GWAS summary statistics then quantified the causal
effect of height on TC risk. The study adhered to STROBE-MR
reporting standards and aligned with the three core instrumen-
tal-variable assumptions: (i) genetic instruments exhibit strong
and robust associations with the exposure, (ii) instruments are
independent of measured and unmeasured confounders, and
(iii) instruments influence the outcome solely through the ex-
posure (Figure 1) [13].

The analytical workflow comprised cohort-specific MR esti-

mation, random-effects meta-analysis to pool causal effects
across cohorts, and colocalization analyses to assess whether
exposure and outcome signals share causal variants at im-
plicated loci. Biological interpretation included gene-set and
pathway enrichment analyses of mapped genes from asso-
ciated variants. Target nomination leveraged SMR integrated
with colocalization to prioritize putative therapeutic genes with
convergent GWAS and eQTL evidence.

Data Sources

We leveraged data from two cohorts to ensure a broad and
diverse genetic representation for our MR analysis. In Cohort
1, Height: Measurements were obtained from the UK Biobank
(n = 336,474). TC: Diagnoses were derived from the latest
FinnGen biobank release, specifically from the cancer registry
using ICD-0-3 codes for neoplasms (total n = 144,160; cases
= 536, controls = 143,624). In Cohort 2, Height: Measurements
were obtained from the IEU GWAS database (n = 360,388). TC:
Diagnoses were extracted from the UK Biobank, defined using
PheCode 187.2 for malignant neoplasm of the testis (total n
= 208,768; cases = 797, controls = 207,971). eQTLs data were
sourced from the eQTLGen Consortium [14]. Table S1 provides
a comprehensive overview of the datasets employed.

LD score regression

LD Score regression leverages GWAS summary statistics
to estimate SNP-based heritability, partition that heritability
across overlapping functional annotations, and quantify genet-
ic correlations between phenotypes. For each variant, the LD
score quantifies the extent of LD it captures and is defined as

Figure 1. An outline of the study's approach. Utilizing a bidirectional Mendelian randomization framework. SNP: single nucleotide polymorphism,
IVW: Inverse-variance weighted method, dIVW: debiased inverse-variance weighted method, RAPS: Robust adjusted profile score Con_ML: con-
strained maximum likelihood and model averaging, Con_Mix: contamination mixture, BWMR: Bayesian weighted Mendelian randomization, MR-

PRESSO: Mendelian Randomization Pleiotropy RESidual Sum and Outlier.
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the sum of squared correlations with neighboring SNPs within
a specified window. This study computed LD scores using the
European-ancestry reference panel from the 1000 Genomes
Project [15]. Univariate and cross-trait LD Score regression
yielded intercepts indexing residual confounding, SNP-herita-
bility estimates, genetic correlations, and related parameters
used to assess the genetic contributions to the complex dis-
eases and traits analyzed [16,17].

Selection of genetic instruments

Genetic instruments were restricted to variants reaching ge-
nome-wide significance (p < 5.0x10°). Independence among
instruments was enforced by LD clumping using r* < 0.001
within a 10 Mb window to minimize correlation among select-
ed SNPs [18]. Instrument strength was quantified with the
F-statistic, and only variants with F > 10 were retained to limit
weak-instrument bias; during screening, the F-statistic was ap-
proximated as F = (B/se) *[19,20]. Directionality was evaluated
with the Steiger test to remove variants that explained more
variance in the outcome than in the exposure [21]. Harmoniza-
tion procedures excluded palindromic SNPs with intermediate
allele frequencies to avoid strand ambiguity and preserved
alignment of effect alleles across datasets.

For SMR analyses, instruments were limited to cis-eQTLs lo-
cated within 1 Mb of the gene region. Eligible eQTLs showed
GWAS with gene expression measured in whole blood (p <
5.0x10*®) and had a minor allele frequency greater than 1%.
This selection ensured biologically proximate regulatory instru-
ments with adequate statistical strength for downstream infer-
ence [22].

MR analysis and sensitivity analyses

The primary causal estimator was the IVW method [23], select-
ed for its efficiency and conservative behavior under heteroge-
neity and implemented under a multiplicative random-effects
framework where appropriate. Outlier detection and correction
were performed with MR-PRESSO, including the global test and
outlier removal [24].

Sensitivity analyses included complementary robustness esti-
mators: BWMR to downweight pleiotropic instruments [25]; the
Con_Mix model to accommodate mixtures of valid and invalid
instruments [26]; MR-RAPS for robustness under weak instru-
ments and idiosyncratic pleiotropy [27]; Con_ML to address
correlated and uncorrelated pleiotropy [28]; and the dIVW
estimator to reduce weak-instrument bias [29]. Single-variant
effects were summarized with the Wald ratio. Additional pro-
cedures comprised leave-one-out analyses to assess leverage
by individual instruments and repeated MR-PRESSO outlier
checks after instrument refinement. Sample overlap was as-
sessed with MRIap [30]; when p_difference > 0.05, any overlap
is unlikely to materially affect statistical power. Heterogene-
ity was quantified using Cochran’s Q [31]; a non-significant
p-value (>0.05) indicated no substantial between-instrument
heterogeneity, whereas a significant result prompted use of
the IVW multiplicative random-effects specification. Horizontal
pleiotropy was evaluated with the MR-Egger intercept [32]; a
non-significant p-value (>0.05) was taken as no evidence for
directional pleiotropy.

For SMR, instrument validity was assessed with the HEIDI test,
with p > 0.05 indicating no significant heterogeneity in variant
effects on the gene-trait relationship. The parameter heidi-mtd
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governed implementation (0 for the original algorithm; 1 as the
default improved procedure using up to 20 SNPs for enhanced
performance) [22,33]. Potential confounding was examined
by querying external variant—phenotype resources to identify
links between candidate instruments and established TC fac-
tors (HIV infection, family history, age, or cryptorchidism [4,5,
34]). Variants flagged as associated with confounders were
removed, and causal estimates were re-derived to confirm the
stability of inference.

Colocalization analysis

The Bayesian colocalization framework quantified whether the
same causal variant drives two association signals by calcu-
lating approximate Bayes factors and transforming them into
posterior probabilities for five mutually exclusive hypotheses.
The hypotheses comprised: HO, neither the exposure signal
nor the GWAS trait harbors a causal variant within the locus;
H1/H2, only the exposure or only the GWAS trait contains a
causal variant; H3, both traits contain distinct causal variants;
and H4, both traits share a single causal variant. Genomic
windows were defined as +50 kb around index variants for
GWAS-GWAS comparisons and +1 Mb around the gene for
eQTL-GWAS analyses [35, 36]. Evidence for colocalization was
classified as suggestive at Posterior probabilities for hypothe-
sis H4 (PP.H4) = 0.50 and strong at PP.H4 > 0.75 [37, 38].

Statistics

Analyses were conducted in R (version 4.4.3) using the follow-
ing packages: TwoSampleMR (v0.5.10), MendelianRandom-
ization (v0.8.0), coloc (v5.1.1), meta (v6.2-1), SMR (v1.03),
MRPRESSO (v1.0), MRlapPro (v0.0.3) [30], Bioconductor
(v3.21), clusterProfiler (v4.16.0) [39], and gprofiler2 (v0.2.3)
[40]. Statistical power was evaluated with an online calculator
[41]. SNP-gene set enrichment was performed with g: Profiler
[40]. Statistical significance was defined as a two-sided p-value
< 0.05 unless otherwise specified.

Results

LD Score regression and Gene Set Enrichment Analysis Re-
veal Genetic Correlation for Height and TC

LD Score regression, which distinguishes polygenicity from
confounding in GWAS, was applied to assess genetic overlap
between adult height and TC. In cohort 1, the height phenotype
yielded a Z-score of 18.75 (p = 1.62 x10™), whereas TC pro-
duced a Z-score of 1.46 (p=0.146). Cohort 2 showed analo-
gous findings, with Z-scores of 20.42 (p = 1.16 x 10°*) for
height and 3.44 (p = 5.87 x 10*) for TC (Figure S1A). Lambda
GC values for the TC phenotype remained below 1.05, indicat-
ing minimal population stratification or systematic bias in both
datasets [42].

A genome-wide significance threshold (p<5x10?®) in cohort 1
identified 607 independent height-associated SNPs. Annota-
tion of these variants mapped to 393 genes, which were most
strongly enriched for the “Body height” term in DisGeNET (ad-
justed p = 1.88x10®) (Figure S1B; Table S2). Similarly, 81
TC-associated SNPs corresponded to genes enriched in the
“TC” category of the Jensen_DISEASES database (adjusted
p=4.89x10 *) (Figure S1C; Table S2). These enrichment results
corroborate that the selected SNPs capture phenotype-specific
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genetic signals.

Association of Genetically Predicted Height with TC Risk
Cohort 1 supported a causal association between height and
TC. After LD pruning, minor allele frequency filtering, and har-
monization, 578 height-associated variants were identified;
eight variants linked to potential confounders were removed,
leaving 570 instruments for analysis. The IVW estimator indi-
cated higher TC risk with greater genetically predicted height
(Odds ratio (OR) 1.384; 95% Confidence Interval (Cl) 1.029-
1.861; p = 0.031; Figure 2A).

Robustness assessments were consistent with the primary
finding. MR-PRESSO returned a significant result (p = 0.032),
and concordant estimates arose from Con_Mix, RAPS, dIVW,
Con_ML, and BWMR methods (Figure 2A). Power to detect the
observed effect was 0.618. Leave-one-out analyses showed no
variant materially altered the association (Table S3). The MR-
Egger intercept provided no evidence of directional pleiotropy
(p = 0.535), and Cochran’s Q suggested no substantial hetero-
geneity across instruments (p = 0.070) (Table S4). Cohort 2
provided independent validation. After excluding six pleiotro-
pic variants, the IVW estimate remained significant (OR 1.328;
95% Cl 1.024-1.723; p = 0.032), with supporting results across
sensitivity analyses (Figure 2A; Table S4).

A random-effects meta-analysis pooled cohort-specific es-
timates. The combined effect size demonstrated a robust

association between genetically predicted height and TC risk
(pooled OR 1.35; 95% Cl 1.12-1.64; p = 0.002; Figure 2B). A
non-significant heterogeneity test (p = 0.84) indicated minimal
between-cohort variability, reinforcing the consistency and reli-
ability of the causal estimate.

Absence of reverse causality between height and TC based on
bidirectional MR and colocalization analyses

Bidirectional MR assessed whether genetic liability to TC in-
fluences adult height under the same instrument selection
criteria used for the forward direction. Reverse-direction in-
struments comprised two SNPs in Cohort 1 and six SNPs in
Cohort 2, and IVW estimates were null (p = 0.759 and p = 0.834,
respectively; Table S5), indicating no evidence that TC genetic
predisposition causally affects height. Colocalization analysis
evaluated whether height and TC association signals share a
causal variant within +50 kb windows around index loci [35].
PP.H4 were 0.04 in Cohort 1 and 0.02 in Cohort 2, values that
do not support colocalization of the two phenotypes in the
queried regions. Concordant null results from reverse-direction
MR and low colocalization probabilities indicate a primarily
unidirectional relationship, whereby genetic determinants of
adult height modulate TC risk rather than the converse.

SNP-gene Enrichment Reveals Potential Mechanisms Linking
Height to TC Risk

Figure 2. Causal effect of genetically proxied height on TC risk. (A) Forest plots of two-sample MR estimates from two independent cohorts. IVW
and MR-PRESSO are prespecified primary estimators; RAPS, dIVW, Con_ML, ConMix, and BWMR serve as sensitivity analyses. Effect sizes are OR
for TC per 1 SD increase in genetically predicted height with 95% CI; OR > 1 indicates higher risk. (B) Random-effects meta-analysis pooling co-
hort-specific IVW estimates. The pooled effect is reported as OR with 95% Cl and two-sided P value. Between-cohort heterogeneity was evaluated
using Cochran’s Q; P_heterogeneity > 0.05 indicates no material heterogeneity.
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To delineate putative mechanistic links between the height
phenotype and TC, the analysis compiled 1,232 SNPs from
both cohorts. It removed 111 duplicates, followed by function-
al annotation with g: Profiler [40], which mapped 506 unique
genes. Gene Ontology (GO) enrichment indicated predominant
biological process terms including connective tissue devel-
opment, cartilage development, chondrocyte differentiation,
skeletal system morphogenesis, and cellular response to
transforming growth factor beta stimulus (Figure 3A). Cellular
component terms were enriched for collagen-containing ex-
tracellular matrix (ECM), microfibril, SMAD protein complex,
sex chromosome, and transcription regulator complex (Figure
3B). Molecular function terms were enriched for extracellular
matrix structural constituent, I-SMAD binding, RNA polymerase
Il-specific DNA-binding transcription activator activity, and
SMAD binding (Figure 3C). Kyoto Encyclopedia of Genes and

https://doi.org/10.71321/sqcqnh24

Genomes (KEGG) pathway analysis highlighted Human T-cell
leukemia virus 1 infection, Growth hormone synthesis, secre-
tion and action, Insulin resistance, Relaxin signaling pathway,
and Endocrine resistance (Figure 3D, Table S6). These enrich-
ment profiles cohere with a height-chondrogenesis-extracel-
lular matrix-endocrine axis and provide biologically plausible
support for the inferred causal relationship between height
and TC.

PMF1 and SLC9B2 as potential susceptibility genes in TC
from SMR and colocalization analysis

SMR analysis prioritized TC-associated genes using eQTL
instruments. In Cohort 1, application of p_SMR < 0.05 and p_
HEIDI > 0.05 identified 721 genes (Figure 4A). In Cohort 2, the
same criteria yielded 711 genes (Figure 4B). The intersection
of the two gene sets resulted in 44 candidates (Table S7,

Figure 3. Functional enrichment of height-TC-associated genes. The enrichment analysis using clusterProfiler identified significant terms in
(A) GO Biological Process, (B) GO Cellular Component, (C) GO Molecular Function, and (D) KEGG pathways. Dots encode term size (Count) and
adjusted significance, x-axis shows EnrichmentScore=-log10(p). Terms shown are the top 10 per panel after filtering at p.adjust<0.05 and, where

applicable, semantic similarity trimming.
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S8). Colocalization analysis was then performed for these 44
genes in both cohorts. Five genes in Cohort 1 (CES4A, PMFT1,
LRRC37A15P, MAP2K1, and SLC9B2) and six genes in Cohort
2 (PRR13, PMF1, CLPTM1L, RP11-10L12.2, BDH2, and SL-
C9B2) showed PP.H4 values above the suggestive threshold
of 0.5 (Figure 4C). Only PMF1 and SLC9B2 replicated across
cohorts, with PP.H4 of 0.65 (Cohort 1) and 0.80 (Cohort 2) for
PMF1, and 0.95 (Cohort 1) and 0.92 (Cohort 2) for SLC9B2,
surpassing the high colocalization threshold of 0.75. The top
SNP for SLC9B2 was rs11727498, and the top SNP for PMF1
was rs2736611 (Figure 4D, E).

These results indicate high-confidence colocalization between
the GWAS signal for TC and the regulatory signal for PMF1 and
SLC9B2 at their respective loci, consistent with a shared caus-
al variant. The pattern supports PMF1 and SLC9B2 expression
as plausible mediators of the observed TC association within
these regions.

Discussion

This study supports a modest but consistent causal effect of
genetically predicted height on TC risk and nominates PMF1
and SLC9B2 as credible susceptibility genes by integrating MR,
SMR, and colocalization evidence. The findings align with de-
velopmental and endocrine biology of growth, while highlight-
ing mechanistic hypotheses that merit functional validation.

A European-ancestry two-sample MR analysis indicated a
statistically significant, positive causal association between
genetically proxied height and TC risk (OR 1.38 per exposure
unit, typically one SD of height; p<0.05), thereby rejecting the
null hypothesis at the 5% significance level. This direction and
magnitude are consistent with conventional observational ev-
idence; for example, a meta-analysis of American and Dutch
cohorts reported a 13% increase in TC risk per 5 cm of height
[43] and a large Korean cohort observed a 9% increase in over-
all cancer hazards per 5 cm, with one of the strongest site-spe-
cific associations for TC [44]. The present estimates offer a
more credible causal interpretation because MR is less sus-
ceptible to residual confounding and reverse causation than
standard observational designs. Under the core instrumen-
tal-variable assumptions, the IVW estimate remained robust
after MR-PRESSO and a suite of sensitivity analyses, including
methods with stronger resistance to pleiotropy. A random-ef-
fects meta-analysis further strengthened the reliability of the
association. This multi-method strategy enhances confidence
in the findings and helps explain inconsistencies in the litera-
ture. For instance, one MR analysis based on 5,518 TC cases
and 19,055 controls reported no association [6], a discrepancy
plausibly attributable to differences in data quality, population
heterogeneity, and methodological choices. It is important
to note that the reported association reflects a relative risk
increase; given the low baseline incidence of TC, the absolute
risk elevation remains modest. Although height is not a modi-
fiable target, it provides etiologic insight and can contribute to
risk stratification.

Mechanistic considerations linking height to TC risk remain in-
completely resolved, yet several coherent hypotheses emerge
from our data and prior biology. Taller individuals likely have a
greater number of susceptible cells, which increases opportu-
nities for malignant transformation [45]. Endocrine correlates
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of stature, notably growth hormone and insulin-like growth fac-
tor 1 (IGF1), exert mitogenic and anti-apoptotic effects through
PI3K-AKT and MAPK cascades, plausibly elevating baseline
oncogenic signaling [46]. Height-associated variants may also
reside in LD with loci that influence cancer susceptibility, pro-
viding an alternative genetic conduit for risk [47,48].

Pathway enrichment in this study converges on a height-chon-
drogenesis-ECM-TGF-B/SMAD-endocrine axis that plausibly
shapes the testicular germ-cell niche across fetal and pubertal
windows. Within this axis, the insulin/IGF system is essential
for late-fetal and neonatal Sertoli-cell proliferation and ulti-
mately determines adult testicular capacity [49,50]; perturba-
tion of insulin/IGF signaling diminishes testis size and sperm
output, underscoring a developmental bottleneck with down-
stream implications for carcinogenesis [51]. In parallel, ECM
components-including collagen-rich matrices and microfibrils-
and SMAD complexes point to fibrillin-1-mediated control of
latent TGF-B bioavailability. This mechanism fine-tunes local
proliferative and survival cues [52,53]. Given that TC often orig-
inates as in-utero germ cell neoplasia in situ and progresses
under pubertal hormonal surges with niche remodeling, the
convergence of endocrine tone and ECM-TGF-§ coupling pro-
vides a biologically credible route by which genetic liability to
height increases the conditional probability of malignant pro-
gression [54]. While these observations offer a unifying frame-
work, targeted functional and longitudinal studies are needed
to define the specific mediators and developmental windows
that causally bridge height biology to TC risk.

In the SMR framework, a significant p_SMR indicates an instru-
mented association between the phenotype and gene expres-
sion; when accompanied by a non-significant HEIDI test and
high PP.H4 from colocalization, the evidence more convinc-
ingly excludes horizontal pleiotropy and distinct nearby causal
variants, strengthening coherence along the proposed causal
chain. Population genetics and functional inference evidence
support PMF1 (rs2736611) and SLC9B2 (rs11727498) as cred-
ible TC susceptibility genes, consistent with the present SMR
and colocalization signals. PMF1 at 1q22 has been repeat-
edly noted in testicular germ cell tumor (TGCT) genome-wide
analyses and reviews, within risk categories enriched for
microtubule and chromosome assembly-domains in which
PMF1 is highlighted alongside TEX14 and related cytoskeletal
regulators [55]. Recent large-scale meta-analytic syntheses
further list PMF1 among genes with moderate-to-high likeli-
hood of TGCT involvement, aligning with pan-cancer resources
that report PMF1 expression, while underscoring the need for
TC-specific, compartment-resolved validation [56].

SLC9B2 (NHA2), a mitochondrial Na+/H+ exchanger that gov-
erns pH and apoptotic tone, sits within the broader NHE family
implicated in tumor proliferation and prognosis [57]; locus-lev-
el fine-mapping places TGCT credible variants upstream of
SLC9B2, supporting overlap between disease association and
regulatory terrain [58]. An early negative report in testis ho-
mogenates predates cell-type-resolved profiling and does not
exclude testis- or tumor-compartment-specific regulation at
this locus [59]. Together, convergent GWAS synthesis (PMF1),
credible-set overlap (SLC9B2), and ion homeostasis biology
(NHAZ2) provide a coherent rationale for mechanistic follow-up,
with priorities including single-cell testis datasets and pertur-
bation studies in seminoma and non-seminoma models.
Several limitations warrant consideration when interpreting
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Figure 4. Prioritization of putative susceptibility genes for TC. (A—B) Volcano plots summarizing SMR associations between cis-eQTL-regulated
gene expression and TC risk in Cohort 1 (A) and Cohort 2 (B). The x-axis denotes SMR effect size (OR) and the y-axis -log10(P_SMR). (C) Colo-
calization results at candidate loci across both cohorts, indicating the posterior probability of a shared causal variant (PP.H4) according to the
thresholds specified in Methods. FAM22D and MKI67IP showed reportable SMR associations after quality control but yielded no evaluable colo-
calization results; accordingly, they are not displayed in panel C. (D-E) Regional SNP-level scatter/LD plots showing the correspondence between
eQTL effects and TC GWAS effects for SLC9B2 in Cohort 1 (D) and PMF1 in Cohort 2 (E). Points are colored by LD (r?) with the lead variant; neigh-
boring genes are displayed to provide genomic context.
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these findings. The MR framework estimates causal effects
between genetically proxied height and TC risk, yet confir-
mation of causality benefits from triangulation across study
designs, including longitudinal cohorts, quasi-experiments
where feasible, and expanded multi-ancestry GWAS resources
to strengthen external validity. The analytic sample derives
predominantly from European populations, which constrains
generalizability; replication in non-European ancestries is
essential to address allele frequency and LD differences and
assess effect size transportability. Pathway enrichment is
hypothesis-generating rather than confirmatory and has not
been validated by targeted functional or longitudinal studies.
Testis- and cell type-resolved eQTL/pQTL datasets, single-cell
transcriptomics, and perturbation assays will be required to es-
tablish whether the highlighted endocrine-ECM-TGF-B/SMAD
programs operate in the relevant germ cell and Sertoli cell
compartments in vivo. The primary analyses assumed a linear
exposure-response between height liability and risk; potential
non-linear or threshold effects, developmental timing, and
gene-environment interactions should be explored in future
work to refine risk modeling. The susceptibility genes and loci
identified through SMR and colocalization nominate plausible
targets but remain provisional. Model choices in SMR/colocal-
ization (priors, windows, single- vs multi-causal architectures)
can influence posterior evidence. Fine-mapping with credible
sets, cross-ancestry replication, molecular validation-CRISPR
perturbation, allelic reporter assays, and orthogonal proteog-
enomic readouts are necessary to establish causality and eval-
uate the translational potential of these candidates.

Conclusion

This work implicates height as a causal risk factor for TC. It
highlights PMF1 and SLC9B2 as convergent susceptibility can-
didates, providing testable targets for tissue-specific function-
al validation and future risk stratification frameworks.
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