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Abstract

Background: Melanoma, known for its aggressive nature and poor prognosis, may be impacted by cuproptosis, a recently discovered form of 
programmed cell death. Despite its unclear mechanisms, preliminary studies suggested a link between cuproptosis and cancer progression and 
metastasis. We aimed to investigate the association between cuproptosis-related genes (CRGs) and melanoma to enhance prognostic and thera-
peutic strategies. 
Method: In this study, we downloaded transcriptome RNA-seqs and clinical information of all melanoma patients from The Cancer Genome Atlas 
(TCGA) database, selected a dataset from Gene Expression Omnibus (GEO) databases, and merged the two datasets. After univariate regression 
analysis, all the samples were categorized into three groups based on expression levels of CRGs. Differential expression analysis was carried out 
for three CRG clusters to obtain the significant differentially expressed genes (DEGs). After univariate Cox regression analysis, multivariate Cox 
regression analysis and the least absolute shrinkage and selection operator (LASSO) algorithm were performed on DEGs, the prognosis related 
genes were screened to establish a prognosis prediction model. The model's accuracy was validated through Kaplan-Meier analysis, receiver op-
erating characteristic (ROC) curve, nomogram, and independent prognostic analysis. Additionally, we compared the immune scores of the tumor 
microenvironment, tumor mutation burden, tumor immune dysfunction and exclusion, and drug sensitivity between high-risk and low-risk groups. 
Results: Through algorithm analysis, eight genes significantly related to prognosis were identified, among which SLFN13, CAMK4, TLR8, EIF4E3, 
and CLEC2B were low-risk genes, OCA2, NAIP, and SAMD9 were high-risk genes. Using these genes, we established a prognostic model that ef-
fectively distinguishes between different survival outcomes, with the low-risk group showing a markedly higher long-term survival rate. 
Conclusion: In conclusion, based on the research of cuproptosis subtypes, we identify the DEG with predictive potential and establish a progno-
sis prediction model. This study may provide a reference for the prognosis and clinical treatment of melanoma patients from the perspective of 
cuproptosis.
Keywords: melanoma; cuproptosis; tumor microenvironment; differentially expressed genes; risk score; bioinformatics analysis.
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Introduction

Melanoma, a malignant tumor that originates from melano-
cytes, typically manifests in the skin [1,2]. The development 
of melanoma is influenced by both environmental and genetic 
factors [3]. Often resembling melanocytic nevi, its early symp-
toms can be subtle, complicating early detection and diagno-
sis [4]. By the time symptoms appear, melanoma frequently 
advances to a late stage characterized by rapid progression, 
widespread metastasis, and poor prognosis [5, 6]. 
The primary treatment for metastatic melanoma has long 
been surgical resection combined with chemotherapy [7]. For 
decades, immunotherapy and targeted drugs, such as PD1 
– PDL1 inhibitors, small molecule BRAF and MEK inhibitors, 
cytotoxic T lymphocyte antigen 4 (CTLA4) inhibitors, and the 

combination of multiple drugs have been explored to revolu-
tionize the treatment of malignant melanoma [8, 9]. However, 
not all melanoma patients respond effectively [10], and resis-
tance to these therapies is emerging [11]. This underscores 
the critical need for new biomarkers that can predict prognosis 
and effective therapeutic targets.
Copper, an essential trace element, plays a pivotal role in vari-
ous cellular functions due to its inherent redox properties [12], 
serving as a cofactor for enzymes involved in mitochondrial 
respiration, antioxidant defense, and the biosynthesis of hor-
mones, neurotransmitters, and pigments [13]. Recent studies 
have highlighted that disruptions in copper homeostasis can 
lead to cytotoxic effects [14-16]. Tsvetkov et al. showed a 
unique cell programmed death mode caused by excessive 
copper accumulation called cuproptosis [17]. This process 
involves the binding of excess copper to lipoylated proteins 
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in the tricarboxylic acid (TCA) cycle, triggering protein aggre-
gation, loss of Fe-S cluster proteins, and resultant proteotoxic 
stress. Interestingly, previous studies have shown that cancer 
cells exhibit higher copper levels than normal tissues, suggest-
ing that they exploit copper for energy needs while avoiding 
cuproptosis [13, 18, 19]. This seems to offer a potential thera-
peutic avenue targeting copper metabolism in cancer cells.
In this study, we aimed to define the role of cuproptosis in 
melanoma by analyzing cuproptosis-related gene (CRG) ex-
pression in patient samples. We categorized melanoma pa-
tients based on CRG expression profiles into distinct subtypes, 
assessed their immune characteristics, and developed a new 
prognostic model using differentially expressed genes (DEGs) 
linked to these CRG clusters. This approach may provide valu-
able insights for enhancing melanoma diagnosis and treat-
ment strategies.

Materials and Methods

Data Collection and Preparation 
Transcriptomic RNA-seq and clinical data were acquired 
from The Cancer Genome Atlas (TCGA) database and the 
GSE65904 dataset from Gene Expression Omnibus (GEO). Af-
ter screening, samples lacking complete survival information 
or from normal tissues were excluded. The remaining tran-
scriptomic and clinical data were merged from both sources. 
Additionally, somatic mutation and copy number variation 
(CNV) were downloaded from GDC and UCSC Xena, respec-
tively. We utilized 18 CRGs  (NFE2L2, NLRP3, ATP7B, ATP7A, 
SLC31A1, FDX1, LIAS, LIPT1, DLD, DLAT, PDHA1, PDHB, MTF1, 
GLS, CDKN2A, DBT, GCSH, DLST) identified from previous 
studies [13, 17, 18, 20, 21].

CNV analysis and prognosis analysis of CRGs
CNV of CRGs was extracted from the CNV file downloaded 
from TCGA. We analyzed the difference and used the R pack-
age “RCircos” (version 1.2.2) for visualization. To validate the 
prognostic value of CRGs, survival analysis and univariate Cox 
regression analysis were conducted on the merged data using 
the R package “limma” (version 3.64.3) and “survival” (version 
3.8.3). According to the relationship between high and low 
gene expression and survival information, CRGs were divided 
into “Favorable factors” and “Risk factors”.

Consensus clustering analysis with CRGs
R package “ConsensusClusterPlus” (version 1.58.0) was run 
to cluster the expression differences of these 18 CRGs in the 
merged sample dataset. The samples were divided into dif-
ferent clusters based on the result of cuproptosis clustering. 
Kaplan-Meier analysis was conducted to compare survival 
probability differences among different CRG clusters. In addi-
tion, the principal component analysis (PCA) diagram showed 
the geometric distance between subclusters. The heatmap 
showed the difference of CRGs expression. Gene set variation 
analysis (GSVA) was conducted to present the differences 
in immune pathway enrichment between the three clusters. 
Single sample gene-set enrichment analysis (ssGSEA) algo-
rithm was performed to compare the immune cell infiltration 
of different CRG clusters, and we visualized the results with R 
package "ggpubr" (version 0.6.1).

Identification of CRG clusters related DEGs and function en-
richment analysis
Differential expression analysis was carried out for three CRG 
clusters to obtain the DEGs. The intersection of DEGs across 
the three clusters was further analyzed. GO and KEGG function 
enrichment analyses were conducted for these DEGs. 

Obtaining DEG clusters
We performed univariate Cox regression analysis on the DEGs 
to get the significant DEGs and conducted the consensus 
unsupervised clustering analysis for these DEGs. The merged 
sample data was divided into different DEG clusters. Ka-
plan-Meier (K-M) survival analysis was performed to show the 
survival differences among DEG clusters. The heat map was 
drawn to describe the differential expression of DEG clusters, 
and the boxplot described the differential expression of CRGs 
among DEG clusters. 

Prognostic Model Construction and Validation 
Prognostic genes were determined using multivariate Cox re-
gression, and LASSO algorithm. To prevent overfitting, the opti-
mal penalty coefficient was obtained through cross validation 
of 1000 iterations. The prognostic CRG clusters related DEGs 
optimal group was determined, and a prognostic risk model 
was established using multivariate Cox regression from DEG 
signature, with patients' risk scores calculated as follows: Risk 
score = ∑n

i=1 exp (Xi) * coef (Xi), “exp” means gene’s expression, 
“coef” means corresponding coefficient. The patients were 
randomly divided into training and test sets (1:1 ratio), and the 
training set, the test set, and all patients were further divided 
into high-risk and low-risk groups based on median risk scores, 
respectively. Kaplan-Meier analysis was carried out by “surviv-
al” R package to compare the long-term survival probability be-
tween the training set, test set, low-risk group, and all patients. 
In addition, based on the “survival” (version 3.8.3), “survminer” 
(version 0.4.2), “timeROC” (version 0.4) R package, we created 
the receiver operating characteristic (ROC) curves of 1-, 3-, and 
5- years and calculated the area under the curve (AUC) to com-
pare the testing effectiveness.

Establishment of Predictive Nomogram
We combined various key clinical factors with risk scores and 
used the “rms”, “regplot” R package to construct 1-year, 3-year, 
and 5-year nomographs to predict the long-term survival rate 
of melanoma patients. And to verify the reliability of the model, 
we drew a calibration curve according to the Hosmer – Leme-
show test. The independence of the prognostic model from 
clinical factors such as sex, age, and pathological stage was 
confirmed through univariate regression and multivariate re-
gression analysis.

Analysis of immune microenvironment (TME), tumor mutation 
burden (TMB), and tumor immune dysfunction and exclusion 
(TIDE)
The CIBERSORT method was used to analyze the difference in 
immune infiltration of total melanoma samples. We used the 
R package “ESTIMATE” to evaluate immune scores, stromal 
scores, and estimate scores of TME. This algorithm can use 
gene expression characteristics to estimate the level of stro-
mal cells and immune cells in malignant tumor tissues. We 
also run the "maftools" R package (version 2.24.0) to analyze 
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the TMB and compare the gene mutation differences between 
high-risk group and low-risk group. And TIDE was downloaded 
from TIDE website (http://tide.dfci.harvard.edu) to predict pa-
tients' response to immunotherapy [22, 23].

Drug sensitivity analysis
According to the Genomics of Drug Sensitivity in Cancer (GDSC, 
https://www.cancerrxgene.org/) database, the "pRRophetic" 
package (version 0.5) in R was applied to compare the differ-
ence between high-risk groups and low-risk groups in sensitivi-
ty to chemotherapy drugs.

Statistical analysis
All statistical analyses in this study were performed using R 
software (version 3.6.1) and PERL. A p-value of less than 0.05 
(two-sided) was considered to indicate statistically significant 
differences. Univariate Cox regression analysis was utilized 
to identify DEGs with prognostic value. We constructed the 
prognostic prediction model using the LASSO regression algo-

rithm, univariate Cox regression analysis, and multivariate Cox 
regression analysis.

Result

CNV and prognosis value of CRGs
Analysis of the CNV in 18 CRGs highlighted significant reduc-
tions in CDKN2A, DLAT, GCSH, FDX1, and DBT, with increas-
es observed in NLRP3. These variations suggested distinct 
patterns of transcription and expression of CRGs in tumor 
samples (Figure 1A), potentially reflecting their involvement 
in tumor development, progression, or other molecular mech-
anisms. Chromosomal locations of CRGs, with increases 
marked in red and decreases in blue, are displayed in Figure1B.
To further assess the prognostic significance of these CRGs, 
we integrated transcriptome RNA sequencing data with clini-
cal information from the TCGA and GEO databases and con-
ducted Kaplan-Meier survival analysis. The analysis revealed 

Figure 1. Genomic variation of CRG. (A) The change of CNV frequency of CRGs. (B) CRG position of CNV on the chromosome. (C) The interaction 
between CRGs in melanoma, where the width of the line represents the strength of the correlation between CRGs.

A
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Figure 2. Identification and analysis of the CRG clusters. (A) Unsupervised consensus clustering identified three molecular subtypes of cupro-
ptosis. (B) The PCA results show the distribution of the three CRG clusters. (C) It shows the differential expression of CRG among the three CRG 
clusters and different clinical features. (D) The K-M survival analysis of the 3 CRG clusters. (E) The immune infiltration difference of TME in the 
three clusters.

significant differences in overall survival between high and low 
expression groups for 15 CRGs, including ATP7A, ATP7B, CDK-
N2A, DBT, DLD, DLST, FDX1, GCSH, LIAS, LIPT1, MTF1, NFE2L2, 
NLRP3, PDHA1, and SLC31A1 (see Supplementary Figure 
S1A-O online). Based on the survival curves from this analysis, 
we categorized the CRGs into "Risk factors" and "Favorable 
factors," which are illustrated in a network diagram (Figure 1C).

Consensus clustering analysis with CRGs
To clearly delineate the characteristic distribution of CRGs 
across varying expression levels in all samples, we performed 
consensus clustering analysis on the transcriptome data, sim-
ulating group numbers from k=2 to k=9. The classification was 
most distinct at k=3, effectively reflecting the differences in 
expression and potential biological diversity among the sam-
ples. Consequently, we divided the samples into three CRG 
clusters: A (n=276), B (n=280), and C (n=126), based on their 
expression characteristics related to risk and Favorable fac-
tors (Figure 2A). PCA results revealed significant differences in 
gene expression profiles among the three CRG clusters (Figure 
2B), suggesting that different clusters may represent distinct 
biological states. The heat map showed the differential ex-
pression of CRG among the three clusters and different clini-
cal features (Figure 2C). Further, K-M survival analysis of the 
three CRG clusters indicated significant differences in survival 
outcomes, with CRG cluster A exhibiting a notably higher long-
term survival probability than clusters B and C (Figure 2D). In 
addition, GSVA results highlighted the top 20 most significant 
pathways differing among clusters A, B, and C (see Supple-

mentary Figure S2A-C online). Analysis of immune cell propor-
tions in the three clusters was conducted using ssGSEA (Figure 
2E). The results demonstrated varying types of immune cell 
infiltration across the melanoma samples, identifying potential 
therapeutic targets within these immunological variations

Identification of CRG clusters related DEGs and immune func-
tion enrichment analysis
Differential expression analysis across the three CRG clusters 
identified intersecting DEGs, presented in a Venn diagram (Fig-
ure 3A). Subsequent immune function enrichment analyses us-
ing GO and KEGG were conducted on these intersecting DEGs. 
The GO analysis identified significant enrichment in Molecular 
Function (MF) and Biological Process (BP) categories (Figure 
3B, Supplementary Figure S3A). KEGG enrichment analysis 
further demonstrated significant differences in the expression 
of DEGs within cytokine-cytokine receptor interaction, Toll-like 
receptor signaling pathway, and PI3K-Akt signaling pathway, 
etc (Figure 3C, Supplementary Figure S3B). These findings 
highlight the significant impact of DEGs associated with CRG 
clusters on immune regulation within melanoma. 

Obtaining DEGs clusters 
Significant DEGs were obtained through univariate Cox re-
gression analysis. Based on the expression differences, we 
conducted a grouping simulation, finding that categorizing the 
samples into two clusters (A and B) provided the most distinct 
grouping performance (Figure 4A). Subsequently, K-M surviv-
al analysis revealed that the long-term survival probability of 
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samples in cluster A was significantly higher than in cluster 
B (Figure 4B). Additionally, we combined the characteristic of 
CRG clusters and population drew a heatmap of gene expres-
sion differences (Figure 4C). The differences in CRG expres-
sion between the two DEG clusters were further detailed in a 
boxplot (Figure 4D), where risk factors such as ATP7B, DLST, 
GCSH, and PDHA1 showed notably higher expression in clus-
ter B. These findings highlight the potential of these DEGs in 
predicting prognosis in melanoma patients, and also suggest-
ed the possible role of CRGs in melanoma progression.

Construction of prognostic model
The LASSO algorithm analysis and multivariate Cox regression 
analysis were applied to 293 DEGs intersecting across three 
CRG clusters, as shown in Figure 5A and 5B. After 1,000 itera-
tions, this analysis identified a prognostic model composed of 
eight genes—SLFN13, CAMK4, TLR8, EIF4E3, CLEC2B, OCA2, 
NAIP, and SAMD9—which exhibited substantial prognostic 
relevance. The risk score for this model was calculated as fol-
lows: Risk score = exp (TLR8) × (-0.266) + exp (SAMD9) × 0.252 
+ exp (NAIP) × 0.465 + exp (EIF4E3) × (-0.152) + exp (CLEC2B) 
× (-0.271) + exp (SLFN13) × (-0.121) + exp (CAMK4) × (-0.103) 
+ exp (OCA2) × 0.091. Using this signature, we calculated risk 
scores for all samples, classifying them into high and low-risk 
groups based on the median score. A Sankey diagram (Figure 
5C) illustrated the relationships between CRG clusters, DEG 
clusters, risk groups, and survival outcomes, highlighting the 
efficacy of CRG and DEG classifications in predicting melano-
ma patient risk and survival. The boxplot showed the risk score 
variations in CRG clusters (Figure 5D) and DEG clusters (Figure 
5E), revealing that groups with higher long-term survival prob-

Figure 3. GO and KEGG analysis of the CRG clusters related DEGs. (A) Intersection DEGs of three CRG clusters. (B-C) Visualization of GO and 
KEGG analysis results.

abilities, specifically CRG Cluster A and DEG Cluster A, had 
lower risk scores. Additionally, boxplots comparing high and 
low-risk groups (Figure 5F) showed significant differences in 
the expression of CRGs, where risk factors such as SLC31A1, 
ATP7A, ATP7B, DLST, GCSH, and PDHA1 are significantly el-
evated in the high-risk group. These findings underscore the 
reliability of our prognostic model.

Verification of the Prognostic Model
A total of 607 melanoma patients were randomly divided into a 
test set (303 samples) and a training set (304 samples), nearly 
a 1:1 ratio, to assess the effectiveness of the risk prediction 
model. K-M survival analysis was conducted on all samples, 
training set and test set categorized by high and low-risk 
groups, consistently showed that the long-term survival prob-
ability of the low-risk group was significantly higher than that 
of the high-risk group (Figure 6A-C). This finding confirmed 
that the risk prediction model effectively differentiates pa-
tients with varying prognostic levels. Expression differences of 
prognostic signature genes between the high-risk and low-risk 
groups were visualized using heatmaps across all samples, 
training, and test sets (Figure 6D-F). Scatter plots depicting 
the survival time against increasing risk scores indicated that 
higher scores were associated with a significant increase in 
mortality and a notable decrease in survival time (Figure 6G-
L). To evaluate the sensitivity and specificity of the prognostic 
model, we drew the ROC curve, the AUC of 1-, 3- and 5-year 
were 0.680, 0.758, and 0.785 in training set, and the minimum 
AUC of all the samples and test set was 0.647 (Figure 6M-O). 
These results emphasize the model's strong predictive capa-
bility for long-term prognosis, even at the lowest AUC value.

A
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Figure 4. Identification and analysis of the DEG clusters. (A) Unsupervised consensus clustering identified two DEG clusters. (B) The K-M survival 
analysis of the DEG clusters. (C) The clinical characteristics and cuproptosis subtypes differences between the two DEG subtypes. (D) The differ-
ences in CRG expression between the two DEG clusters.

Further verification of the model’s reliability as an independent 
predictor was conducted using univariate and multivariate Cox 
regression analyses. The hazard ratio (HR) values of risk score 
showed that it could be regarded as an independent prognos-
tic indicator alongside clinical characteristics (Figure 7A-B). To 
enhance clinical applicability, a nomogram integrating clinico-
pathological features and risk scores was developed to quan-
titatively predict 1-year, 3-year, and 5-year survival probabilities 
for melanoma patients (Figure 7C). As shown in Figure 7C, if 
the total risk score of a patient is 258 points, then in the pre-
diction of this model, the survival probability of this patient in 
the next 1 year, 3 years and 5 years is 90.5%, 46.8% and 28.3% 
respectively. The accuracy of the nomogram was affirmed by 
calibration curves, which showed high consistency between 
actual observations and predictions (Figure 7D). These find-
ings suggest that the constructed risk prediction model not 
only effectively forecasts the survival prognosis of melanoma 
patients but also holds substantial potential for clinical appli-
cation due to its high predictive accuracy and consistency.

Analysis of immune microenvironment, TMB and TIDE
To understand the relationship between prognostic genes, risk 
scores, and immune cell infiltration, we utilized the CIBERSORT 

algorithm (Figure 8A). The analysis revealed that higher risk 
scores were negatively correlated with the infiltration of M1 
macrophages, plasma cells, activated CD4 memory T cells, 
and CD8 T cells, but positively correlated with M0 macro-
phages. This suggests that a higher risk score reflects a more 
immunosuppressive TME. Further evaluation of immune, stro-
mal, and estimate scores within the TME showed significantly 
higher scores in the low-risk group compared to the high-risk 
group (Figure 8B). This indicated a more robust immune pres-
ence in the low-risk group, underscoring the importance of the 
TME in patient prognosis.
Immune checkpoint blockade (ICB) therapy has shown sub-
stantial clinical benefits in treating melanoma; however, its 
effectiveness varies, and some patients experience consider-
able side effects [24]. Recent studies have identified TMB as 
a valuable predictor of tumor immune response, potentially 
indicating the efficacy of ICB therapy [22, 25, 26]. Quantitative 
TMB analysis revealed that the high-risk group had a higher 
concentration of mutations across more genes than the low-
risk group, which may correspond to a higher TMB (Figure 8C-
D). K-M analysis further demonstrated that patients with high 
TMB had better survival probabilities than those with low TMB. 
Moreover, integrating risk model predictions, we found that the 
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Figure 5. Construction of the prognostic model. (A-B) LASSO regression analysis screened prognostic signatures from the DEGs to build the 
model. (C) The relationship among CRG clusters, DEG clusters, risk groups and survival status. (D) Distribution of risk scores across the three 
CRG clusters. (E) Distribution of risk scores across the two DEG clusters. (F) Comparison of CRG expression between the high-risk group and 
low-risk group.

highest long-term survival probability was observed in patients 
with high TMB and low-risk scores, whereas the lowest was in 
those with low TMB and high-risk scores (Figure 8E-F). 
Additionally, we obtained immunotherapy scores for patient 
samples from the TIDE website and conducted a matching 
analysis with our prognostic model, calculating TIDE scores for 
the two groups. The results showed significant differences in 
TIDE scores, with higher scores observed in the low-risk group 
compared to the high-risk group (Figure 8G). When combined 
with the TMB analysis, these results suggested that patients in 
the high-risk group may have a more active response to immu-
notherapy. 

Drug sensitivity analysis
To enhance the clinical utility of our prognostic model and 
improve treatment efficacy, we compared the drug sensitivity 
between the high-risk and low-risk groups to identify potential 
drugs for more effective immune or targeted therapies. The 
analysis of half-maximal inhibitory concentration (IC50) for 
various drugs revealed significant differences between the two 
groups. The low-risk group demonstrated greater sensitivity 
to several immunotherapeutic and targeted drugs, including 
Axitinib, Cisplatin, Gemcitabine, Methotrexate, Nilotinib, Rapa-
mycin, Sunitinib, and Temsirolimus (Figure 9A-H). Conversely, 
the high-risk group exhibited higher sensitivity to drugs such 
as Docetaxel, Elesclomol, Imatinib, and Thapsigargin (Figure 
9I-L). These findings provided valuable insights into tailoring 
treatment strategies based on the risk profile, potentially lead-

ing to more effective therapeutic interventions for patients.

Discussion

Melanoma, the most prevalent and deadly form of skin cancer, 
often goes undetected in its early stages due to non-obvious 
symptoms, leading to diagnoses at more advanced stages 
with metastatic lesions and consequently poor prognoses [27, 
28]. While the development and application of immunotherapy 
and targeted therapies, such as BRAF inhibitors, BRAF/MEK 
combination targeted therapy, and PD-1/PD-L1/CTLA-4 block-
ers, have significantly improved outcomes for many patients, 
resistance to these therapies frequently develops through mu-
tations that promote irreversible drug resistance [10, 29, 30]. 
The progression of tumor cells is primarily driven by accu-
mulations of gene mutations, which lead to uncontrolled cell 
proliferation [31]. A critical aspect of many cancers, including 
melanoma, is the activation of the MAPK pathway, which stim-
ulates growth-promoting genes, leading to anchoring loss and 
inhibition of intercellular contact, resulting in uncontrolled cell 
proliferation and transformation [1, 32].Normally, cells can ini-
tiate various regulated cell death (RCD) mechanisms to main-
tain cellular homeostasis, including necroptosis, pyroptosis, 
ferroptosis, autophagic cell death, programmed cell death and 
apoptosis [33]. In addition, a novel form of cell death termed 
cuproptosis, characterized by copper-induced cell death, has 
been identified [17]. The research showed that excessive cop-

A
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Figure 6. The validation of the prognostic model. The survival analysis results, risk score distribution, survival status, the expression of genes re-
lated to prognosis in the high and low risk groups, and AUC of all samples (A, D, G, J, M), training set (B, E, H, K, N), and test set (C, F, I, L, O). 

per accumulates in cells and directly combines with the lipoy-
lated components of the TCA, leading to the aggregation of 
lipoylated proteins and the loss of Fe-S cluster proteins, which 
in turn leads to protein toxicity stress and eventually leads to 
cell death. And they proved that FDX1 (a cuproptosis related 
gene) was involved in regulating the lipoylation of proteins. 
In addition, the analysis of cancer dependency graph showed 
that the expression of FDX1 was positively correlated with the 
level of lipoic acid in tumor tissue, and the deletion of FDX1 
could inhibit the lipoylation of dihydrolipoamide S-acetyltrans-
ferase (DLAT) (an enzyme in TCA). This showed that the new 
field of cuproptosis may provide a new perspective to develop 
therapeutic targets for cancer treatment.
In this study, we categorized melanoma samples into three 
distinct cuproptosis-related subtypes based on the expression 
profiles of 18 CRGs. Survival analysis revealed significant 
prognostic differences among these subtypes. Further analy-
sis identified DEGs associated with these subtypes that were 
involved in cytotoxic production, immune response regulation, 
and various signaling pathways such as PI3K-Akt, potential-
ly impacting tumor cell metabolism and evasion of immune 
surveillance. potentially impacting tumor cell metabolism and 
evasion of immune surveillance. Our research focused on the 
CRG clusters related DEGs, and through algorithm simulation, 
we obtained eight significant prognostic signatures and estab-

lished a prognostic model. Previous studies have established 
prognostic models for bladder cancer, prostate cancer, he-
patocellular carcinoma, and other diseases and shown good 
predictive ability [34-36]. And we also verified the performance 
of our prognostic models through survival analysis, ROC curve 
and independent prognostic analysis, etc. The results indicat-
ed that our prognostic model has the ability to group patients 
according to the risk score and predict the prognosis of pa-
tients. 
The eight screened-out DEGs related to CRG clusters are 
CAMK4, TLR8, EIF4E3, CLEC2B, OCA2, SLFN13, SAMD9 and 
NAIP. Notably, research by Li et al. demonstrated that microR-
NA-129-5p targeted calmodulin-dependent protein kinase IV 
(CAMK4) to inhibit the proliferation, migration, and invasion 
of hepatocytes, suggesting that CAMK4 could mitigate can-
cer progression by inhibiting the MAPK pathway [37]—a key 
promoter of tumor growth and angiogenesis. This finding 
indicated that CAMK4 may be a promising target for mela-
noma, especially since current treatments like Vemurafenib 
and Trametinib target the MAPK pathway to control disease 
progression [10]. Toll-like receptors (TLRs), critical to innate 
immunity, are garnering attention in immunotherapy. With the 
development of immunotherapy, the TLRs family has also 
been paid more and more attention. Motolimod, a TLR8 ago-
nist, has shown potential in preclinical models, underscoring 
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Figure 7. The clinical applicability of the prognostic model. (A-B) The results of univariate and multivariate Cox regression analysis prove that 
the risk score has independent predictive value. (C) The nomogram was used to calculate the survival rates of 1-, 3-, and 5-years for patients with 
melanoma. (D) Calibration curve for nomogram.

the relevance of the TLRs in cancer treatment, particularly as 
resistance to existing therapies increases [38]. With the tar-
geting and immune therapy of melanoma, drug resistance is 
gradually increasing. The development or combination of new 
drugs may improve the therapeutic effect. Another noteworthy 
gene, EIF4E3, part of the EIF4E family, acts as a tissue-specific 
tumor suppressor by binding to the methyl-7-guanosine cap, 
thus preventing carcinogenic transformation [39]. CLEC2B, a 
marker identified in various cancers and linked to immune re-
sponse regulation [40], has been shown to act as a protective 
factor in melanoma [41]. This suggested its potential utility 
as a therapeutic target, possibly enhancing immune response 
against tumor cells. The Schlafen (SLFN) gene family, associ-
ated with immune cell differentiation and regulation, showed 
varied impacts across different cancers. For example, high 
SLFN13 expression correlated with poor prognosis in gastric 
cancer [42], yet appeared as a low-risk factor in our melanoma 
studies, potentially due to epigenetic modifications. This indi-
cated the complex role of SLFN genes in cancer and the need 
for further investigation. OCA2, associated with pigmentation, 

has been linked to an increased risk of familial melanoma [43] 
and cutaneous squamous cell carcinoma [44]. This suggested 
its role in melanoma progression and potential as a thera-
peutic target. SAMD9 mutations were implicated in various 
diseases, including myelodysplastic syndrome (MDS), esopha-
geal cancer, and lung cancer. Research indicated that SAMD9 
suppression could slow glioblastoma progression, highlighting 
its role in cancer development and as a potential therapeutic 
target [45, 46]. Lastly, the neuronal apoptosis inhibitor protein 
(NAIP), part of the inhibitor of apoptosis protein (IAP) family, 
was known to suppress apoptosis. Research by Yang et al. 
showed that tumor suppressor p53 regulates miR-15a to re-
duce NAIP expression, thereby enhancing apoptosis in breast 
cancer cells. This finding aligns with earlier studies suggesting 
that increasing IAP expression can re-sensitize cancer cells 
to apoptotic signals, offering new avenues for cancer therapy. 
This highlighted the potential of targeting IAP pathways, in-
cluding NAIP, as a strategy for inducing cancer cell apoptosis 
and improving therapeutic outcomes [47-49]. These findings 
collectively underscored the potential of these genes as tar-
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Figure 8. Comparison of TME and TMB between high-risk and low-risk groups. (A) The correlation between the number of immune cells infiltrated 
and the eight prognostic signatures and risk score. (B) The TME scores of high-risk and low-risk group. (C-D) The TMB of high-risk and low-risk 
group. (E-F) K-M survival analysis based on TMB. (G) The TIDE scores of two groups.

gets for melanoma treatment, necessitating further studies 
to fully understand their roles and therapeutic potential in the 
tumor microenvironment and beyond.
TME consists of tumor cells, immune cells, and cytokines, 
forming an ecosystem that plays a critical role in tumor devel-
opment, growth, and metastasis [50]. With the advancement 
of ICB therapies, the study of immune cells, cytokines, and im-
mune mechanisms within the TME has deepened [51]. In our 
study, we observed a significant negative correlation between 
risk scores and the infiltration levels of CD8+ T cells, activated 
memory CD4+ T cells, M1 macrophages, and plasma cells. 
Macrophages can be polarized into two types based on their 
phenotype and secreted cytokines: M1 and M2. M1 macro-
phages secrete tumor-killing agents such as reactive oxygen 
species, nitric oxide, IFN-γ, and Fas ligand (FasL), and they also 
recruit other tumor-specific immune cells through chemokine 
secretion, playing a key role in anti-tumor responses [52]. Sim-
ilarly, activated memory CD4+ T helper (Th1) cells and CD8+ T 
cells are crucial for establishing long-term immune memory, 
which triggers a rapid cytotoxic response upon re-exposure 
to tumor cells. These immune cells are essential for the long-
term remission of melanoma [53, 54]. A disruption in the 
balance between tumor cells and the host immune response 
may lead to the progression of melanoma, contributing to the 
poorer prognosis seen in high-risk groups. These observations 
are critical for understanding the molecular underpinnings that 
differentiate prognostic outcomes in melanoma, providing a 
basis for targeted therapeutic interventions.
In addition, we evaluated the TME of the high-risk and low-risk 
groups based on the ESTIMATE algorithm. The results showed 
that the stromal, immune, and ESTIMATE scores were signifi-
cantly higher in the low-risk group compared to the high-risk 
group, suggesting that the low-risk group had better immune 
defense and response capabilities. However, contrary to our 

expectations, the TIDE score for the low-risk group was higher, 
indicating a greater likelihood of immune escape in this group. 
This apparent paradox underscores the complex and dual-na-
ture role of immune responses in melanoma progression. 
Melanoma is widely recognized for its high immunogenicity, 
often generating a substantial number of neoantigens through 
mechanisms such as chromosomal instability, high mutation 
burden, and structural variants. These tumor-specific antigens 
can initiate potent innate and adaptive immune reactions, 
recruiting lymphocytes and other immune mediators into the 
tumor bed, which is reflected in the high immune scores ob-
served.However, the very intensity of this immune pressure 
drives the selection of tumor clones capable of exploiting 
regulatory pathways to evade destruction. Melanoma cells 
can engage a variety of resistance mechanisms, including the 
upregulation of immune checkpoint molecules (e.g., PD-L1, 
CTLA-4), recruitment of immunosuppressive cells (such as 
Tregs, MDSCs, or M2 macrophages), and secretion of soluble 
factors that dampen T-cell function. Therefore, an immune-rich 
microenvironment may not always correlate with productive 
cytotoxicity; rather, it can represent a battlefield where immune 
activation and suppression coexist dynamically. The elevat-
ed TIDE score in the context of high immune infiltration may 
thus reflect this dysfunctional state—a TME characterized by 
abundant but exhausted or inhibited lymphocytes, and active 
mechanisms of adaptive immune resistance.In summary, the 
coexistence of high immune scores and high TIDE scores in 
the low-risk group illuminates the intricate and often contra-
dictory nature of tumor–immune interactions. It suggests that 
the low-risk group may be dominated by an “immune-inflamed” 
but poorly effective phenotype, where the immune response 
is actively suppressed by escape mechanisms. This insight 
emphasizes the necessity of combining prognostic signatures 
with functional biomarkers of immune competence to more 
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Figure 9. Comparison of sensitivity to chemotherapy or targeted therapy between high-risk and low-risk groups of melanoma patients. (A) Ax-
itinib; (B) Cisplatin; (C) Gemcitabine; (D) Methotrexate; (E) Nilotinib; (F) Rapamycin; (G) Sunitinib; (H) Temsirolimus; (I) Docetaxel; (J) Elesclomol; (K) 
Imatinib; (L) Thapsigargin.
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accurately stratify patients and tailor immunotherapeutic strat-
egies [52].
Despite these findings, our study has some limitations. First, 
the relationship between CRGs and melanoma development 
remains unclear and warrants further investigation. Additional-
ly, our analysis is based on retrospective clinical samples, and 
further prospective studies are needed to validate the clinical 
utility of our prognostic model.

Conclusion

In conclusion, we identified eight prognostic signatures from 
differentially expressed genes associated with CRG clusters 
and developed a prognostic model for melanoma patients. 
This model offers valuable insights into the immune land-
scape, prognosis, and potential clinical treatment options, 
serving as a useful reference for guiding personalized melano-
ma therapies.

Abbreviations

Area under the curve: AUC; Biological Process: BP; Calmod-
ulin-dependent protein kinase IV: CAMK4; Cuproptosis-related 
genes: CRGs; Cytotoxic T lymphocyte antigen 4: CTLA4; Copy 
number variation: CNV; Differentially expressed genes: DEGs; 
Fas ligand: FasL; Gene set variation analysis: GSVA; Gene 
Expression Omnibus: GEO; Genomics of Drug Sensitivity in 
Cancer: GDSC; Immune checkpoint blockade: ICB; Inhibitor of 
apoptosis protein: IAP; Half-maximal inhibitory concentration: 
IC50; Kaplan-Meier: K-M; Least absolute shrinkage and selec-
tion operator: LASSO; Molecular Function: MF; Myelodysplas-
tic syndrome: MDS; Neuronal apoptosis inhibitor protein: NAIP; 
Principal component analysis: PCA; Regulated cell death: RCD; 
Receiver operating characteristic: ROC; Single sample gene-
set enrichment analysis: ssGSEA; The Cancer Genome Atlas: 
TCGA; Tricarboxylic acid: TCA; Tumor microenvironment: TME; 
Tumor mutation burden: TMB; Tumor immune dysfunction and 
exclusion: TIDE; Toll-like receptors: TLRs; T helper cell 1: Th1

Author Contributions 

Zishen Xia, Nan Gao and Jianwen Wang contributed equally 
to this work as co-first authors, participating in data curation, 
formal analysis, methodology development, software imple-
mentation, visualization, and manuscript writing. Lizhao Yan, 
Cong Ma, and Kangwei Wang were responsible for reviewing 
the conceptual design, writing the article, and proofreading. 
Yuxiong Weng conceived the study, overseeing the study de-
sign, writing, data acquisition, analysis, and interpretation. All 
authors read and approved the final manuscript.

Acknowledgements

Not Applicable.

Funding Information

Not Applicable.

Ethics Approval and Consent to Participate

Not Applicable.

Competing Interests

The authors declare that they have no existing or potential 
commercial or financial relationships that could create a con-
flict of interest at the time of conducting this study.

Data Availability

The data that support the findings of this study are available 
in the following repositories: TCGA [http://cancergenome.nih.
gov], GEO: [https://www.ncbi.nlm.nih.gov/geo], TIDE [http://
tide.dfci.harvard.edu], GDSC [https://www.cancerrxgene.org]. 
These data were derived from resources available in the public 
domain and are freely accessible under their respective usage 
guidelines.

References

[1]	 Shain AH, & Bastian BC. (2020). Author Correction: From 
melanocytes to melanomas. Nature Reviews Cancer, 
20(6), 355-355. https://doi.org/10.1038/s41568-020-0269-
7 

[2]	 Long GV, Swetter SM, Menzies AM, Gershenwald JE, & 
Scolyer RA. (2023). Cutaneous melanoma. The Lancet, 
402(10400), 485-502. https://doi.org/10.1016/S0140-
6736(23)00821-8 

[3]	 Schadendorf D, Fisher DE, Garbe C, Gershenwald JE, Grob 
J-J, Halpern A, et al. (2015). Melanoma. Nature Reviews 
Disease Primers, 1(1), 15003. https://doi.org/10.1038/
nrdp.2015.3 

[4]	 Corneli P, Zalaudek I, Magaton Rizzi G, & di Meo N. (2018). 
Improving the early diagnosis of early nodular melanoma: 
can we do better? Expert Review of Anticancer Therapy, 
18(10), 1007-1012. https://doi.org/10.1080/14737140.20
18.1507822 

[5]	 Cullen JK, Simmons JL, Parsons PG, & Boyle GM. (2020). 
Topical treatments for skin cancer. Advanced Drug De-
livery Reviews, 153, 54-64. https://doi.org/10.1016/j.ad-
dr.2019.11.002 

[6]	 Leonardi, Falzone, Salemi, Zanghì, Spandidos, McCubrey, 
et al. (2018). Cutaneous melanoma: From pathogenesis to 
therapy (Review). International Journal of Oncology, 52(4), 
1071-1080. https://doi.org/10.3892/ijo.2018.4287 

[7]	 Pavri SN, Clune J, Ariyan S, & Narayan D. (2016). Malignant 
Melanoma: Beyond the Basics. Plastic and Reconstruc-
tive Surgery, 138(2), 330e-340e. https://doi.org/10.1097/
prs.0000000000002367 

[8]	 Parra LM, & Webster RM. (2022). The malignant melano-
ma market. Nat Rev Drug Discov, 21(7), 489-490. https://

A

https://doi.org/10.1038/s41568-020-0269-7
https://doi.org/10.1038/s41568-020-0269-7
https://doi.org/10.1038/s41568-020-0269-7
https://doi.org/10.1038/s41568-020-0269-7
https://doi.org/10.1016/S0140-6736(23)00821-8
https://doi.org/10.1016/S0140-6736(23)00821-8
https://doi.org/10.1016/S0140-6736(23)00821-8
https://doi.org/10.1016/S0140-6736(23)00821-8
https://doi.org/10.1038/nrdp.2015.3
https://doi.org/10.1038/nrdp.2015.3
https://doi.org/10.1038/nrdp.2015.3
https://doi.org/10.1038/nrdp.2015.3
https://doi.org/10.1080/14737140.2018.1507822
https://doi.org/10.1080/14737140.2018.1507822
https://doi.org/10.1080/14737140.2018.1507822
https://doi.org/10.1080/14737140.2018.1507822
https://doi.org/10.1080/14737140.2018.1507822
https://doi.org/10.1016/j.addr.2019.11.002
https://doi.org/10.1016/j.addr.2019.11.002
https://doi.org/10.1016/j.addr.2019.11.002
https://doi.org/10.1016/j.addr.2019.11.002
https://doi.org/10.3892/ijo.2018.4287
https://doi.org/10.3892/ijo.2018.4287
https://doi.org/10.3892/ijo.2018.4287
https://doi.org/10.3892/ijo.2018.4287
https://doi.org/10.1097/prs.0000000000002367
https://doi.org/10.1097/prs.0000000000002367
https://doi.org/10.1097/prs.0000000000002367
https://doi.org/10.1097/prs.0000000000002367
https://doi.org/10.1038/d41573-022-00075-5
https://doi.org/10.1038/d41573-022-00075-5


Life Conflux

24

doi.org/10.1038/d41573-022-00075-5 
[9]	 Jenkins RW, & Fisher DE. (2021). Treatment of Advanced 

Melanoma in 2020 and Beyond. Journal of Investigative 
Dermatology, 141(1), 23-31. https://doi.org/10.1016/
j.jid.2020.03.943 

[10]	Guo W, Wang H, & Li C. (2021). Signal pathways of mela-
noma and targeted therapy. Signal Transduction and Tar-
geted Therapy, 6(1), 424. https://doi.org/10.1038/s41392-
021-00827-6 

[11]	Winder, M., Virós, A. (2017). Mechanisms of Drug Resis-
tance in Melanoma. In: Mandalà, M., Romano, E. (eds) 
Mechanisms of Drug Resistance in Cancer Therapy. Hand-
book of Experimental Pharmacology, vol 249. Springer, 
Cham. https://doi.org/10.1007/164_2017_17

[12]	Witt B, Schaumlöffel D, & Schwerdtle T. (2020). Subcellular 
Localization of Copper—Cellular Bioimaging with Focus on 
Neurological Disorders. International Journal of Molecular 
Sciences, 21(7). 

[13]	Ge EJ, Bush AI, Casini A, Cobine PA, Cross JR, DeNicola 
GM, et al. (2022). Connecting copper and cancer: from 
transition metal signalling to metalloplasia. Nature Re-
views Cancer, 22(2), 102-113. https://doi.org/10.1038/
s41568-021-00417-2 

[14]	Wazir SM, & Ghobrial I. (2017). Copper deficiency, a new 
triad: anemia, leucopenia, and myeloneuropathy. Journal 
of Community Hospital Internal Medicine Perspectives, 
7(4), 265-268. https://doi.org/10.1080/20009666.2017.13
51289 

[15]	Scheiber I, Dringen R, & Mercer JFB. (2013). Copper: 
Effects of Deficiency and Overload. In A. Sigel, H. Sigel, 
& R. K. O. Sigel (Eds.), Interrelations between Essential 
Metal Ions and Human Diseases (10.1007/978-94-007-
7500-8_11pp. 359-387). Springer Netherlands. https://doi.
org/10.1007/978-94-007-7500-8_11 

[16]	Aspli KT, Flaten TP, Roos PM, Holmøy T, Skogholt JH, 
& Aaseth J. (2015). Iron and copper in progressive de-
myelination – New lessons from Skogholt's disease. 
Journal of Trace Elements in Medicine and Biology, 
31, 183-187. https://doi.org/https://doi.org/10.1016/
j.jtemb.2014.12.002

[17]	Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, 
Abdusamad M, et al. (2022). Copper induces cell death 
by targeting lipoylated TCA cycle proteins. Science, 
375(6586), 1254-1261. https://doi.org/doi:10.1126/sci-
ence.abf0529 

[18]	Blockhuys S, Celauro E, Hildesjö C, Feizi A, Stål O, Fier-
ro-González JC, et al. (2016). Defining the human cop-
per proteome and analysis of its expression variation 
in cancers†. Metallomics, 9(2), 112-123. https://doi.
org/10.1039/c6mt00202a 

[19]	Ackerman CM, Lee S, & Chang CJ. (2017). Analytical 
Methods for Imaging Metals in Biology: From Transition 
Metal Metabolism to Transition Metal Signaling. Analytical 
Chemistry, 89(1), 22-41. https://doi.org/10.1021/acs.anal-
chem.6b04631 

[20]	Wang Y, Zhang L, & Zhou F. (2022). Cuproptosis: a new 
form of programmed cell death. Cellular & Molecular 
Immunology, 19(8), 867-868. https://doi.org/10.1038/
s41423-022-00866-1 

[21]	Kim B-E, Nevitt T, & Thiele DJ. (2008). Mechanisms for 
copper acquisition, distribution and regulation. Nature 

Chemical Biology, 4(3), 176-185. https://doi.org/10.1038/
nchembio.72 

[22]	Chan TA, Yarchoan M, Jaffee E, Swanton C, Quezada SA, 
Stenzinger A, et al. (2019). Development of tumor muta-
tion burden as an immunotherapy biomarker: utility for the 
oncology clinic. Annals of Oncology, 30(1), 44-56. https://
doi.org/10.1093/annonc/mdy495 

[23]	Zhu Y, Yao S, & Chen L. (2011). Cell Surface Signaling Mol-
ecules in the Control of Immune Responses: A Tide Mod-
el. Immunity, 34(4), 466-478. https://doi.org/https://doi.
org/10.1016/j.immuni.2011.04.008

[24]	Auslander N, Zhang G, Lee JS, Frederick DT, Miao B, 
Moll T, et al. (2018). Robust prediction of response to 
immune checkpoint blockade therapy in metastatic mel-
anoma. Nature Medicine, 24(10), 1545-1549. https://doi.
org/10.1038/s41591-018-0157-9 

[25]	McGrail DJ, Pilié PG, Rashid NU, Voorwerk L, Slagter M, 
Kok M, et al. (2021). High tumor mutation burden fails to 
predict immune checkpoint blockade response across all 
cancer types. Annals of Oncology, 32(5), 661-672. https://
doi.org/10.1016/j.annonc.2021.02.006 

[26]	Barroso-Sousa R, Jain E, Cohen O, Kim D, Buendia-Buen-
dia J, Winer E, et al. (2020). Prevalence and mutational 
determinants of high tumor mutation burden in breast 
cancer. Annals of Oncology, 31(3), 387-394. https://doi.
org/10.1016/j.annonc.2019.11.010

[27]	Hayward NK, Wilmott JS, Waddell N, Johansson PA, Field 
MA, Nones K, et al. (2017). Whole-genome landscapes of 
major melanoma subtypes. Nature, 545(7653), 175-180. 
https://doi.org/10.1038/nature22071 

[28]	Nikolaou V, & Stratigos AJ. (2014). Emerging trends in the 
epidemiology of melanoma. Br J Dermatol, 170(1), 11-19. 
https://doi.org/10.1111/bjd.12492 

[29]	Lin WM, & Fisher DE. (2017). Signaling and Immune Regu-
lation in Melanoma Development and Responses to Ther-
apy. Annual Review of Pathology: Mechanisms of Disease, 
12(Volume 12, 2017), 75-102. https://doi.org/https://doi.
org/10.1146/annurev-pathol-052016-100208 

[30]	Sun J, Carr MJ, & Khushalani NI. (2020). Principles of 
Targeted Therapy for Melanoma. Surgical Clinics of North 
America, 100(1), 175-188. https://doi.org/https://doi.
org/10.1016/j.suc.2019.09.013 

[31]	Renz PF, Ghoshdastider U, Baghai Sain S, Valdivia-Fran-
cia F, Khandekar A, Ormiston M, et al. (2024). In vivo 
single-cell CRISPR uncovers distinct TNF programmes in 
tumour evolution. Nature, 632(8024), 419-428. https://doi.
org/10.1038/s41586-024-07663-y

[32]	da Silva DA, De Luca A, Squitti R, Rongioletti M, Rossi L, 
Machado CML, et al. (2022). Copper in tumors and the use 
of copper-based compounds in cancer treatment. Journal 
of Inorganic Biochemistry, 226, 111634. https://doi.org/
https://doi.org/10.1016/j.jinorgbio.2021.111634 

[33]	Tang D, Kang R, Berghe TV, Vandenabeele P, & Kroemer G. 
(2019). The molecular machinery of regulated cell death. 
Cell Research, 29(5), 347-364. https://doi.org/10.1038/
s41422-019-0164-5

[34]	 Lin Z, Xu Q, Miao D, & Yu F. (2021). An Inflammatory Re-
sponse-Related Gene Signature Can Impact the Immune 
Status and Predict the Prognosis of Hepatocellular Carci-
noma [Original Research]. Frontiers in Oncology, Volume 
11 - 2021. https://doi.org/10.3389/fonc.2021.644416 

https://doi.org/10.1038/d41573-022-00075-5
https://doi.org/10.1016/j.jid.2020.03.943
https://doi.org/10.1016/j.jid.2020.03.943
https://doi.org/10.1016/j.jid.2020.03.943
https://doi.org/10.1016/j.jid.2020.03.943
https://doi.org/10.1038/s41392-021-00827-6
https://doi.org/10.1038/s41392-021-00827-6
https://doi.org/10.1038/s41392-021-00827-6
https://doi.org/10.1038/s41392-021-00827-6
https://doi.org/10.1007/164_2017_17
https://doi.org/10.1007/164_2017_17
https://doi.org/10.1007/164_2017_17
https://doi.org/10.1007/164_2017_17
https://doi.org/10.1007/164_2017_17
https://doi.org/10.1038/s41568-021-00417-2
https://doi.org/10.1038/s41568-021-00417-2
https://doi.org/10.1038/s41568-021-00417-2
https://doi.org/10.1038/s41568-021-00417-2
https://doi.org/10.1038/s41568-021-00417-2
https://doi.org/10.1080/20009666.2017.1351289
https://doi.org/10.1080/20009666.2017.1351289
https://doi.org/10.1080/20009666.2017.1351289
https://doi.org/10.1080/20009666.2017.1351289
https://doi.org/10.1080/20009666.2017.1351289
https://doi.org/10.1007/978-94-007-7500-8_11
https://doi.org/10.1007/978-94-007-7500-8_11
https://doi.org/10.1007/978-94-007-7500-8_11
https://doi.org/10.1007/978-94-007-7500-8_11
https://doi.org/10.1007/978-94-007-7500-8_11
https://doi.org/10.1007/978-94-007-7500-8_11
https://doi.org/https://doi.org/10.1016/j.jtemb.2014.12.002
https://doi.org/https://doi.org/10.1016/j.jtemb.2014.12.002
https://doi.org/https://doi.org/10.1016/j.jtemb.2014.12.002
https://doi.org/https://doi.org/10.1016/j.jtemb.2014.12.002
https://doi.org/https://doi.org/10.1016/j.jtemb.2014.12.002
https://doi.org/https://doi.org/10.1016/j.jtemb.2014.12.002
https://doi.org/doi:10.1126/science.abf0529
https://doi.org/doi:10.1126/science.abf0529
https://doi.org/doi:10.1126/science.abf0529
https://doi.org/doi:10.1126/science.abf0529
https://doi.org/doi:10.1126/science.abf0529
https://doi.org/10.1039/c6mt00202a
https://doi.org/10.1039/c6mt00202a
https://doi.org/10.1039/c6mt00202a
https://doi.org/10.1039/c6mt00202a
https://doi.org/10.1039/c6mt00202a
https://doi.org/10.1021/acs.analchem.6b04631
https://doi.org/10.1021/acs.analchem.6b04631
https://doi.org/10.1021/acs.analchem.6b04631
https://doi.org/10.1021/acs.analchem.6b04631
https://doi.org/10.1021/acs.analchem.6b04631
https://doi.org/10.1038/s41423-022-00866-1
https://doi.org/10.1038/s41423-022-00866-1
https://doi.org/10.1038/s41423-022-00866-1
https://doi.org/10.1038/s41423-022-00866-1
https://doi.org/10.1038/nchembio.72
https://doi.org/10.1038/nchembio.72
https://doi.org/10.1038/nchembio.72
https://doi.org/10.1038/nchembio.72
https://doi.org/10.1093/annonc/mdy495
https://doi.org/10.1093/annonc/mdy495
https://doi.org/10.1093/annonc/mdy495
https://doi.org/10.1093/annonc/mdy495
https://doi.org/10.1093/annonc/mdy495
https://doi.org/https://doi.org/10.1016/j.immuni.2011.04.008
https://doi.org/https://doi.org/10.1016/j.immuni.2011.04.008
https://doi.org/https://doi.org/10.1016/j.immuni.2011.04.008
https://doi.org/https://doi.org/10.1016/j.immuni.2011.04.008
https://doi.org/10.1038/s41591-018-0157-9
https://doi.org/10.1038/s41591-018-0157-9
https://doi.org/10.1038/s41591-018-0157-9
https://doi.org/10.1038/s41591-018-0157-9
https://doi.org/10.1038/s41591-018-0157-9
https://doi.org/10.1016/j.annonc.2021.02.006
https://doi.org/10.1016/j.annonc.2021.02.006
https://doi.org/10.1016/j.annonc.2021.02.006
https://doi.org/10.1016/j.annonc.2021.02.006
https://doi.org/10.1016/j.annonc.2021.02.006
https://doi.org/10.1016/j.annonc.2019.11.010
https://doi.org/10.1016/j.annonc.2019.11.010
https://doi.org/10.1016/j.annonc.2019.11.010
https://doi.org/10.1016/j.annonc.2019.11.010
https://doi.org/10.1016/j.annonc.2019.11.010
https://doi.org/10.1038/nature22071
https://doi.org/10.1038/nature22071
https://doi.org/10.1038/nature22071
https://doi.org/10.1038/nature22071
https://doi.org/10.1111/bjd.12492
https://doi.org/10.1111/bjd.12492
https://doi.org/10.1111/bjd.12492
https://doi.org/https://doi.org/10.1146/annurev-pathol-052016-100208
https://doi.org/https://doi.org/10.1146/annurev-pathol-052016-100208
https://doi.org/https://doi.org/10.1146/annurev-pathol-052016-100208
https://doi.org/https://doi.org/10.1146/annurev-pathol-052016-100208
https://doi.org/https://doi.org/10.1146/annurev-pathol-052016-100208
https://doi.org/https://doi.org/10.1016/j.suc.2019.09.013
https://doi.org/https://doi.org/10.1016/j.suc.2019.09.013
https://doi.org/https://doi.org/10.1016/j.suc.2019.09.013
https://doi.org/https://doi.org/10.1016/j.suc.2019.09.013
https://doi.org/10.1038/s41586-024-07663-y
https://doi.org/10.1038/s41586-024-07663-y
https://doi.org/10.1038/s41586-024-07663-y
https://doi.org/10.1038/s41586-024-07663-y
https://doi.org/10.1038/s41586-024-07663-y
https://doi.org/https://doi.org/10.1016/j.jinorgbio.2021.111634
https://doi.org/https://doi.org/10.1016/j.jinorgbio.2021.111634
https://doi.org/https://doi.org/10.1016/j.jinorgbio.2021.111634
https://doi.org/https://doi.org/10.1016/j.jinorgbio.2021.111634
https://doi.org/https://doi.org/10.1016/j.jinorgbio.2021.111634
https://doi.org/10.1038/s41422-019-0164-5
https://doi.org/10.1038/s41422-019-0164-5
https://doi.org/10.1038/s41422-019-0164-5
https://doi.org/10.1038/s41422-019-0164-5
https://doi.org/10.3389/fonc.2021.644416
https://doi.org/10.3389/fonc.2021.644416
https://doi.org/10.3389/fonc.2021.644416
https://doi.org/10.3389/fonc.2021.644416
https://doi.org/10.3389/fonc.2021.644416


25

https://doi.org/10.71321/vxy0xd87

[35]	Liu H, Gao L, Li J, Zhai T, Xie T, & Xu Y. (2020). Identifica-
tion and validation of a ferroptosis-related genes based 
prognostic signature for prostate cancer. bioRxiv. 

[36]	Sun J, Yue W, You J, Wei X, Huang Y, Ling Z, et al. (2021). 
Identification of a Novel Ferroptosis-Related Gene Prog-
nostic Signature in Bladder Cancer [Original Research]. 
Frontiers in Oncology, Volume 11 - 2021. https://doi.
org/10.3389/fonc.2021.730716 

[37]	Li Z, Lu J, Zeng G, Pang J, Zheng X, Feng J, et al. (2019). 
MiR-129-5p inhibits liver cancer growth by targeting calci-
um calmodulin-dependent protein kinase IV (CAMK4). Cell 
Death & Disease, 10(11), 789. https://doi.org/10.1038/
s41419-019-1923-4

[38]	Frega G, Wu Q, Le Naour J, Vacchelli E, Galluzzi L, Kro-
emer G, et al. (2020). Trial Watch: experimental TLR7/
TLR8 agonists for oncological indications. OncoImmu-
nology, 9(1), 1796002. https://doi.org/10.1080/216240
2X.2020.1796002 

[39]	Osborne MJ, Volpon L, Kornblatt JA, Culjkovic-Kraljacic B, 
Baguet A, & Borden KLB. (2013). eIF4E3 acts as a tumor 
suppressor by utilizing an atypical mode of methyl-7-gua-
nosine cap recognition. Proceedings of the National Acad-
emy of Sciences, 110(10), 3877-3882. https://doi.org/
doi:10.1073/pnas.1216862110 

[40]	Li X, Tao X, & Ding X. (2022). An integrative analysis to 
reveal that CLEC2B and ferroptosis may bridge the gap 
between psoriatic arthritis and cancer development. Sci-
entific Reports, 12. 

[41]	Gao Y, Li Y, Niu X, Wu Y, Guan X, Hong Y, et al. (2020). Iden-
tification and Validation of Prognostically Relevant Gene 
Signature in Melanoma. BioMed Research International, 
2020(1), 5323614. https://doi.org/10.1155/2020/5323614 

[42]	Chen X, Liang S, Hao J, Wang T, HB, &Liu G, et al. Schlafen 
family is a prognostic biomarker and corresponds with 
immune infiltration in gastric cancer. Frontiers in immunol-
ogy 13, 922138, doi:10.3389/fimmu.2022.922138 (2022).

[43]	Hawkes JE, Cassidy PB, Manga P, Boissy RE, Goldgar D, 
Cannon-Albright L, et al. (2013). Report of a novel OCA2 
gene mutation and an investigation of OCA2 variants on 
melanoma risk in a familial melanoma pedigree. Jour-
nal of Dermatological Science, 69(1), 30-37. https://doi.
org/10.1016/j.jdermsci.2012.09.016 

[44]	Chahal HS, Lin Y, Ransohoff KJ, Hinds DA, Wu W, Dai H-J, 
et al. (2016). Genome-wide association study identifies 
novel susceptibility loci for cutaneous squamous cell car-
cinoma. Nature Communications, 7(1), 12048. https://doi.
org/10.1038/ncomms12048 

[45]	Ma W, Jin H, Liu W, Li X, Zhou X, Guo X, et al. (2020). Ho-
meobox B8 Targets Sterile Alpha Motif Domain-Containing 
Protein 9 and Drives Glioma Progression. Neuroscience 
Bulletin, 36(4), 359-371. https://doi.org/10.1007/s12264-
019-00436-y 

[46]	Ma W, Zhang K, Bao Z, Jiang T, & Zhang Y. (2021). SAMD9 
Is Relating With M2 Macrophage and Remarkable Ma-
lignancy Characters in Low-Grade Glioma [Original Re-
search]. Frontiers in Immunology, Volume 12 - 2021. 
https://doi.org/10.3389/fimmu.2021.659659

[47]	Gyrd-Hansen M, & Meier P. (2010). Erratum: IAPs: From 
caspase inhibitors to modulators of NF-κB, inflammation 
and cancer (Nature Reviews Cancer (2010) 10 (561-574)). 
Nature Reviews Cancer, 10(12), 890-890. 

[48]	Choi J, Hwang YK, Choi YJ, Yoo KE, Kim JH, Nam SJ, et al. 
(2007). Neuronal apoptosis inhibitory protein is overex-
pressed in patients with unfavorable prognostic factors in 
breast cancer. J Korean Med Sci, 22 Suppl(Suppl), S17-23. 
https://doi.org/10.3346/jkms.2007.22.S.S17 

[49]	Yang L, Zhao W, Wei P, Zuo W & Zhu S. Tumor suppressor 
p53 induces miR-15a processing to inhibit neuronal apop-
tosis inhibitory protein (NAIP) in the apoptotic response 
DNA damage in breast cancer cell. American journal of 
translational research 9, 683-691 (2017).

[50]	Xiao Y, & Yu D. (2021). Tumor microenvironment as a ther-
apeutic target in cancer. Pharmacology & Therapeutics, 
221, 107753. https://doi.org/https://doi.org/10.1016/
j.pharmthera.2020.107753 

[51]	de Visser KE, & Joyce JA. (2023). The evolving tumor 
microenvironment: From cancer initiation to metastat-
ic outgrowth. Cancer Cell, 41(3), 374-403. https://doi.
org/10.1016/j.ccell.2023.02.016 

[52]	Marzagalli M, Ebelt ND, & Manuel ER. (2019). Unraveling 
the crosstalk between melanoma and immune cells in the 
tumor microenvironment. Seminars in Cancer Biology, 59, 
236-250. https://doi.org/https://doi.org/10.1016/j.sem-
cancer.2019.08.002

[53]	Cui J, Chen Y, Wang HY, & Wang R-F. (2014). Mechanisms 
and pathways of innate immune activation and regulation 
in health and cancer. Human Vaccines & Immunothera-
peutics, 10(11), 3270-3285. https://doi.org/10.4161/2164
5515.2014.979640 

[54]	Woo S-R, Fuertes Mercedes B, Corrales L, Spranger S, 
Furdyna Michael J, Leung Michael YK, et al. (2015). 
STING-Dependent Cytosolic DNA Sensing Mediates Innate 
Immune Recognition of Immunogenic Tumors. Immunity, 
42(1), 199. https://doi.org/10.1016/j.immuni.2014.12.015 

https://doi.org/10.3389/fonc.2021.730716
https://doi.org/10.3389/fonc.2021.730716
https://doi.org/10.3389/fonc.2021.730716
https://doi.org/10.3389/fonc.2021.730716
https://doi.org/10.3389/fonc.2021.730716
https://doi.org/10.1038/s41419-019-1923-4
https://doi.org/10.1038/s41419-019-1923-4
https://doi.org/10.1038/s41419-019-1923-4
https://doi.org/10.1038/s41419-019-1923-4
https://doi.org/10.1038/s41419-019-1923-4
https://doi.org/10.1080/2162402X.2020.1796002
https://doi.org/10.1080/2162402X.2020.1796002
https://doi.org/10.1080/2162402X.2020.1796002
https://doi.org/10.1080/2162402X.2020.1796002
https://doi.org/10.1080/2162402X.2020.1796002
https://doi.org/doi:10.1073/pnas.1216862110
https://doi.org/doi:10.1073/pnas.1216862110
https://doi.org/doi:10.1073/pnas.1216862110
https://doi.org/doi:10.1073/pnas.1216862110
https://doi.org/doi:10.1073/pnas.1216862110
https://doi.org/doi:10.1073/pnas.1216862110
https://doi.org/10.1155/2020/5323614
https://doi.org/10.1155/2020/5323614
https://doi.org/10.1155/2020/5323614
https://doi.org/10.1155/2020/5323614
https://doi.org/10.1016/j.jdermsci.2012.09.016
https://doi.org/10.1016/j.jdermsci.2012.09.016
https://doi.org/10.1016/j.jdermsci.2012.09.016
https://doi.org/10.1016/j.jdermsci.2012.09.016
https://doi.org/10.1016/j.jdermsci.2012.09.016
https://doi.org/10.1016/j.jdermsci.2012.09.016
https://doi.org/10.1038/ncomms12048
https://doi.org/10.1038/ncomms12048
https://doi.org/10.1038/ncomms12048
https://doi.org/10.1038/ncomms12048
https://doi.org/10.1038/ncomms12048
https://doi.org/10.1007/s12264-019-00436-y
https://doi.org/10.1007/s12264-019-00436-y
https://doi.org/10.1007/s12264-019-00436-y
https://doi.org/10.1007/s12264-019-00436-y
https://doi.org/10.1007/s12264-019-00436-y
https://doi.org/10.3389/fimmu.2021.659659
https://doi.org/10.3389/fimmu.2021.659659
https://doi.org/10.3389/fimmu.2021.659659
https://doi.org/10.3389/fimmu.2021.659659
https://doi.org/10.3389/fimmu.2021.659659
https://doi.org/10.3346/jkms.2007.22.S.S17
https://doi.org/10.3346/jkms.2007.22.S.S17
https://doi.org/10.3346/jkms.2007.22.S.S17
https://doi.org/10.3346/jkms.2007.22.S.S17
https://doi.org/10.3346/jkms.2007.22.S.S17
https://doi.org/https://doi.org/10.1016/j.pharmthera.2020.107753
https://doi.org/https://doi.org/10.1016/j.pharmthera.2020.107753
https://doi.org/https://doi.org/10.1016/j.pharmthera.2020.107753
https://doi.org/https://doi.org/10.1016/j.pharmthera.2020.107753
https://doi.org/10.1016/j.ccell.2023.02.016
https://doi.org/10.1016/j.ccell.2023.02.016
https://doi.org/10.1016/j.ccell.2023.02.016
https://doi.org/10.1016/j.ccell.2023.02.016
https://doi.org/https://doi.org/10.1016/j.semcancer.2019.08.002
https://doi.org/https://doi.org/10.1016/j.semcancer.2019.08.002
https://doi.org/https://doi.org/10.1016/j.semcancer.2019.08.002
https://doi.org/https://doi.org/10.1016/j.semcancer.2019.08.002
https://doi.org/https://doi.org/10.1016/j.semcancer.2019.08.002
https://doi.org/10.4161/21645515.2014.979640
https://doi.org/10.4161/21645515.2014.979640
https://doi.org/10.4161/21645515.2014.979640
https://doi.org/10.4161/21645515.2014.979640
https://doi.org/10.4161/21645515.2014.979640
https://doi.org/10.1016/j.immuni.2014.12.015
https://doi.org/10.1016/j.immuni.2014.12.015
https://doi.org/10.1016/j.immuni.2014.12.015
https://doi.org/10.1016/j.immuni.2014.12.015
https://doi.org/10.1016/j.immuni.2014.12.015

