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Abstract

Background: Amnestic mild cognitive impairment (aMCI), owing to its high prevalence and significant prognostic relevance for dementia, has be-
come a key focus in the early detection and intervention of neurodegenerative diseases. However, the abnormal intrinsic brain functional network 
dynamics in aMCI patients remain inadequately understood.
Methods: A total of 66 participants, comprising 31 aMCI patients and 35 age- and education-matched healthy controls (HCs), underwent rest-
ing-state fMRI scans and comprehensive neuropsychological assessments. This study examined intrinsic brain network dynamics in aMCI pa-
tients via dynamic functional network connectivity (dFNC) analysis, dynamic graph theoretical analysis, and multilayer network analysis.
Results: Compared with HCs, aMCI patients presented a significantly shorter mean dwell time (MDT) in state 2 (P < 0.05). In addition, the mod-
ularity coefficient Q was significantly greater in aMCI patients (1.40 ± 1.20) than in HCs (0.90 ± 0.46, P < 0.05). No significant differences were 
observed between the groups in terms of network efficiency or network switching rates.
Conclusion: These findings emphasize significant abnormal intrinsic brain functional network dynamics in aMCI patients, with disrupted network 
stability and increased modularity indicating maladaptive reorganization of brain networks. These results provide valuable biomarkers for early 
diagnosis and intervention, contributing to a deeper understanding of the neurobiological underpinnings of cognitive decline in aMCI patients.
Keywords: aMCI; dynamic functional network; fMRI; multilayer networks; independent component analysis; graph theory.
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Abnormal intrinsic brain functional network dynamics 
in amnestic mild cognitive impairment

Introduction

Mild cognitive impairment (MCI) represents an intermediate 
stage between normal aging and dementia and is character-
ized by a progressive decline in memory or other cognitive 
functions without significant impairment in activities of daily 
living but does not meet the diagnostic criteria for dementia 
[1]. Amnestic mild cognitive impairment (aMCI), the most 
common subtype, is likely to progress to dementia, with an 
80% probability of progressing within 6 years of diagnosis [2]. 
Owing to its high prevalence and strong prognostic relevance 
for dementia, aMCI has emerged as a critical focus for early 
detection and intervention in neurodegenerative disease re-
search [3].
Functional magnetic resonance imaging (fMRI), especially 
resting-state fMRI, has become a powerful tool for investigat-
ing the intrinsic brain functional network. Numerous studies 

have demonstrated that aMCI patients exhibit abnormal intrin-
sic functional connectivity in specific brain networks, such as 
the default mode network (DMN) and frontoparietal network 
(FPN), which are closely associated with cognitive impair-
ments [4]. Despite these findings, most existing studies have 
focused primarily on static functional network connectivity, 
often overlooking the dynamic and temporally variable nature 
of intrinsic brain activity [5]. However, brain networks dynami-
cally reorganize their functional connections over time [5], and 
these dynamic properties may reveal essential neuropatho-
logical mechanisms underlying cognitive dysfunction in aMCI 
patients.
This study investigated abnormal intrinsic brain functional 
network dynamics in aMCI patients via dynamic functional 
network connectivity (dFNC) analysis and multilayer network 
analysis. Unlike traditional static methods, dFNC enables the 
examination of temporal fluctuations and state transitions in 
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functional connectivity, offering a more nuanced understand-
ing of network instability and adaptability in aMCI patients [6]. 
These dynamic changes may reflect underlying neuropatho-
logical processes that static analyses fail to capture, offering 
deeper insight into the mechanisms driving cognitive decline. 
Additionally, examining variability in brain network topology, 
such as global and local efficiency, reveals disruptions in the 
brain's capacity for efficient information integration and pro-
cessing [7]. Disruptions in these topological properties may 
signal impairments in the ability of the brain to efficiently pro-
cess and integrate information, which is crucial for maintain-
ing cognitive function [8].
Another key dimension in the study of brain network dynam-
ics is modular organization, which is commonly quantified by 
the modularity coefficient Q. Modularity reflects the degree 
to which brain regions are clustered into functionally special-
ized modules or communities, promoting efficient local pro-
cessing within modules while enabling integration across the 
brain [9]. However, alterations in modularity—manifested as 
either excessive segregation or impaired integration between 
modules—have been implicated in cognitive decline and neu-
rodegenerative processes [10]. Notably, an increased modu-
larity coefficient Q may signal a shift toward heightened local 
specialization at the expense of global network coordination, 
which could hinder the ability of the brain to integrate informa-
tion and respond adaptively to cognitive demands [9, 11]. In 
parallel, the rate at which the brain transitions between differ-
ent network states, termed the network switching rate, serves 
as an index of network flexibility and adaptability. Frequent 
and efficient switching is thought to facilitate cognitive flexibil-
ity and support dynamic responses to changing environmental 
or task-related requirements [12]. In aMCI patients, disruptions 
in modularity and alterations in network switching rates may 
reflect maladaptive neural reorganization or compensatory 
mechanisms in response to emerging cognitive deficits.
In summary, this study aims to comprehensively characterize 
the abnormal intrinsic brain functional network dynamics in 
aMCI patients via dFNC analysis, dynamic graph theoretic 
analysis, and multilayer network analysis. These dynamic out-
comes have the potential to reveal specific biomarkers for the 
early detection and monitoring of disease progression, offering 
new opportunities for personalized interventions. The findings 
from this study are expected to provide a deeper understand-
ing of how large-scale brain network reorganization contrib-
utes to cognitive decline in aMCI patients, thereby informing 
future clinical strategies for the diagnosis and management of 
neurodegenerative diseases.

Materials and Methods

Participants
For this case-control study, we initially recruited 110 partic-
ipants from the Memory Clinic of Yueyang Hospital of Inte-
grated Traditional Chinese and Western Medicine and local 
communities in Shanghai between January 2022 and October 
2022. Ultimately, 31 (28.18%) aMCI patients and 35 (31.82%) 
healthy controls (HCs) matched for age, sex, and education 
were included. Approval for the study was obtained from the 
local ethics committee (NO. 2021-103), and all participants 
provided informed consent.

The inclusion criteria for the aMCI group were as follows: (1) 
met the Jak/Bondi diagnostic criteria [13]; (2) had a Mini-Men-
tal State Examination (MMSE) score > 24 points [14]; (3) were 
aged 55–80 years; (4) had objective memory impairment, Au-
ditory Verbal Learning Test Long-Term Delay Recall (AVLT-N5) 
and Recognition (AVLT-N7) scores falling below 1.0 standard 
deviation (SD) from the age-corrected normative mean [15]; (5) 
had complex Instrumental Activity of Daily Living (IADL) ability 
that might have been slightly impaired while still maintaining 
independent daily living [16]; (6) had a Clinical Dementia Rat-
ing (CDR) memory score of 0.5 points [17] but did not meet the 
diagnostic criteria for dementia set by the National Institute 
on Aging-Alzheimer's Association (NIA-AA) [18]; and (7) were 
right-handed.
The inclusion criteria for the HCs group were as follows: (1) 
lacked complaints of cognitive decline; (2) had neuropsycho-
logical testing results that did not meet Jak/Bondi's diagnostic 
criteria [13]; (3) had a normal ability to perform activities of 
daily living; and (4) lacked a family history of dementia.
The exclusion criteria for all participants were as follows: (1) 
had a history of mental illness, such as delirium, mania, de-
pression, or anxiety; (2) had contraindications for magnetic 
resonance imaging (MRI) examination; (3) had less than 6 
years of education; (4) had severe aphasia and audio-visual 
impairment; (5) had severe medical diseases, such as car-
diopulmonary insufficiency, liver, or renal insufficiency; and 
(6) had other diseases that caused cognitive impairment and 
white matter hyperintensity lesions, such as cerebrovascular 
disease, craniocerebral trauma, hydrocephalus, brain tumors, 
or intracranial infection.

Neuropsychological testing
All participants underwent comprehensive neuropsychological 
testing conducted by two senior neuropsychologists who were 
blinded to the clinical diagnosis. General cognitive function 
was assessed via the MMSE, Montreal Cognitive Assess-
ment-Basic (MoCA-B) and Addenbrooke's Cognitive Examina-
tion III (ACE-III) [14, 19-20]. Memory function was assessed 
via the AVLT [21], and attention function was assessed via the 
Symbol Digit Modalities Test (SDMT) [22]. Language function 
was assessed via the Boston Naming Test (BNT) [23] and An-
imal Verbal Fluency Test (AFT) [24]. Executive function was 
assessed via the Stroop test [25], and spatial function was 
assessed via the Judgment of Line Orientation (JLO) test [26] 
and Silhouette Test (ST) [27].

Data acquisition
A 3.0 Tesla Magnetom Prisma scanner (Siemens Healthcare, 
Erlangen, Germany) was used for fMRI scanning, employing a 
head coil for scans ranging from the cranial vertex to the level 
of the foramen magnum. During the scan, they were asked 
to lie quietly in the scanner, close their eyes without falling 
asleep, and try to keep their heads as still as possible. The de-
tailed fMRI protocols are provided in Supplemental Table 1.

Data preprocessing
The standard pipeline of Statistical Parametric Mapping ver-
sion 12 (SPM12, https://www.fil.ion.ucl.ac.uk/spm/software/
spm12/) was used for resting-state fMRI data preprocessing. 
This data preprocessing pipeline included the exclusion of the 
first 10 volumes, slice timing correction, realignment, normal-
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ization and smoothing [15].

Group independent component analysis
Group independent component analysis (ICA) was performed 
on the preprocessed fMRI data via the Group ICA of the Func-
tional MRI Toolbox (GIFT v3.0c, http://icatb.sourceforge.net) 
[28]. The detailed processing procedure involves the following 
steps: (1) Principal component analysis (PCA) is applied twice 
to perform dimensionality reduction on the preprocessed data 
[29]. (2) The InfoMax algorithm is applied to perform ICA on 
the PCA-reduced dataset to extract independent components 
(ICs) [30]. (3) Independent component analysis and stability 
selection (ICASSO) was applied for 20 repeated iterations 
to increase the reliability and stability of the ICA results [31], 
ultimately yielding 17 ICs. (4) Individual-level ICs were extract-
ed from the group ICA back-reconstruction and subjected to 
Fisher's Z-transformation [32]. (5) The sorting component GUI 
module in the GIFT software, in conjunction with the maximum 
spatial overlap of spatial network templates, was employed to 
select significant ICs and categorize them into distinct func-
tional networks. The selection criteria for ICs were detailed in 
Supplementary Material 1.
The time series signals corresponding to the ICs mapped to 
brain functional networks were postprocessed to reduce noise 
interference: (1) removal of linear, quadratic, and cubic drifts; 
(2) removal of spike signals; (3) low-pass filtering with a cutoff 
frequency of 0.15 Hz; and (4) regression of head motion pa-
rameters [33].

Dynamic FNC analysis
The GIFT toolbox (v3.0c, http://icatb.sourceforge.net) was uti-
lized to extract the time series of ICs associated with the func-
tional brain networks for dFNC analysis. The time series were 
segmented into multiple consecutive time windows via the 
widely applied sliding window approach, with a window length 
of 44 seconds (55 TRs) and a step size of 1 TR, as this selec-
tion has been reported to provide a good balance between 
the ability to capture dynamic functional connectivity changes 
and the quality of correlation matrix estimation [34]. On this 
basis, k-means clustering methods were employed to perform 
clustering analysis on the dFNC matrix [35]. The L1 distance 
(Manhattan distance) function was employed to estimate the 
similarity between different time windows [36], and 500 iter-
ations and 150 repetitions were used to increase the robust-
ness of the results [37]. The optimal number of clusters was 
determined via the elbow method (k = 4) [37], which involves 
partitioning the dFNC into four states. For each state, the fol-
lowing temporal features were computed: (1) fraction time 
(FT): the frequency with which each state occurs during the 
total duration; (2) mean dwell time (MDT): the average time the 
subjects remain in each state; (3) number of transitions (NT): 
the number of transitions between different dynamic states, 
reflecting the frequency with which the brain network switches 
from one state to another [33]. Then, a validation analysis was 
conducted using a window length of 56 seconds (70 TRs) to 
evaluate robustness. Additionally, edge analysis was conduct-
ed for each state to assess the functional connectivity among 
different brain networks.

Dynamic graph theoretic analysis
The graph theoretical analysis (GRETNA) toolbox (http://www.

nitrc.org/projects/gretna/) [38] was applied to conduct graph 
theoretical variability analysis on the dFNC matrix in each 
time window. To ensure the sparsity and comparability of the 
results, a stepwise thresholding method (0.27: 0.01: 0.48) 
was employed to compute the variations in the graph theory 
metrics across different sparsity levels [39]. At each sparsity 
threshold, two categories of graph theory metrics were calcu-
lated: global efficiency and local efficiency. The variability of 
the area under the curve (AUC) for global and local efficiency 
across all sparsity levels was used to evaluate the dynamic 
evolution of the brain's functional network topology, there-
by avoiding bias associated with selecting a single sparsity 
threshold [33].

Multilayer modularity and network switching analysis
The functional network connectivity information of each time 
window is treated as an individual layer, with layers from differ-
ent time windows interlinked to form a multilayer network. The 
iterative ordered Louvain algorithm was applied to perform 
modularity analysis of the network (with parameters gammas 
= [0.9, 1, 1.1], omegas = [0.5, 0.75, 1]) . This algorithm can 
automatically identify functional modules within the network 
and compute the modularity coefficient Q, which quantifies 
the density of different modules and the strength of connec-
tions between modules. Additionally, the network transition 
rate of nodes was computed to assess the dynamic changes 
and switching patterns of the brain network across functional 
modules. The data processing pipelines are depicted in Figure 
1.

Figure 1. Pipelines for data processing.

Statistical analysis
Clinical data were analyzed via SPSS software version 27.0 
(IBM Corp., Armonk, NY, USA). Intergroup comparisons for 
continuous variables were performed via the independent 
two-sample t-test, whereas categorical variables were an-
alyzed via the chi-square (χ²) test. A significance level of 
P < 0.05 was considered indicative of statistically significant 
differences between the groups.
The FT, MNT, NT, variability of global and local efficiency, mod-
ularity coefficient Q, and network switching analysis were com-
pared between groups via a general linear model, with age, 
sex, and education included as covariates. Partial correlation 
analyses were subsequently conducted between the afore-
mentioned group-differentiated network metrics and neuropsy-
chological test scores, with age, sex, and education included 
as covariates.

A
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Results

Demographic and clinical characteristics
The baseline characteristics of aMCI patients and HCs are 
listed in Table 1, including demographic data and cognitive 
function scores. There was no statistically significant differ-
ence in gender, age, height, weight or education between the 
two groups (P > 0.05). aMCI patients presented impairments 
in general cognitive function and in multiple specific cognitive 
domains.

Intrinsic connectivity networks
Ten significant independent components (ICs) were identified 
and assigned to six brain networks (Figure 2): the dorsal atten-
tion network (DAN: IC12 and IC15); the default mode network 
(DMN: IC13 and IC16); the frontoparietal network (FPN: IC1 
and IC7); the somatomotor network (SMN: IC6); the ventral 

attention network (VAN: IC10); and the visual network (VN: IC2 
and IC3).

Dynamic FNC analysis
After applying clustering via the k-means algorithm, the opti-
mal number of clusters was determined via the elbow method, 
resulting in four states (Figure 3): state 1 (32%), state 2 (44%), 
state 3 (16%), and state 4 (8%).
Compared with HCs, the MDT in state 2 was significantly lower 
in aMCI patients (P < 0.05), whereas no statistically significant 
differences were observed in the FT or NT across the four 
states between the two groups (Figure 4, P > 0.05). Partial cor-
relation analysis further revealed a significant positive correla-
tion between MDT in state 2 and completion time on Stroop 
test A, after controlling for age, sex, and education (r = 0.338, 
P = 0.007).
Additionally, the results of the edge analysis for each state are 
shown in Supplementary Figure 1.

Figure 2 Spatial patterns of the resting-state networks.

A B C D

E F G H

Figure 3. K-means clustering analysis results.

A

A
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Characteristics HCs (N = 35) aMCI (N = 31) T/χ2 P

Basic characteristics
Age (y) 65.09±6.49 67.65±7.32 -1.505 0.137

Education (y) 11.46±3.13 11.74±3.11 -0.37 0.712
Height (cm) 163.51±6.21 161.15±12.17 0.914 0.367
Weight (kg) 61.94±9.58 62.58±12.24 -0.223 0.824

Gender, male (%) w8 (22.86%) 13 (41.94%) 2.758 0.097
Cognitive performance
General cognitive func-

tion
MMSE 28.43±1.52 27.13±1.63 3.353 0.001

MoCA-B 26.26±1.99 22.52±3.13 5.863 < 0.001
ACE-Ⅲ 82.49±8.19 76.32±6.03 3.507 < 0.001

Memory function
AVLT 60.49±9.63 34.42±8.24 11.738 < 0.001

AVLT-N1 4.06±1.30 2.97±0.89 3.869 < 0.001
AVLT-N2 6.86±1.77 4.47±0.94 6.942 < 0.001
AVLT-N3 8.23±1.59 5.23±1.25 8.487 < 0.001
AVLT-N4 6.69±1.71 2.33±1.37 11.181 < 0.001
AVLT-N5 6.37±1.97 1.57±1.36 11.253 < 0.001
AVLT-N6 6.17±2.42 1.90±1.40 8.861 < 0.001
AVLT-N7 22.11±1.57 17.10±1.77 12.118 < 0.001

Attention function
SDMT 42.40±8.97 30.10±13.13 4.336 < 0.001

Language function
BNT 24.24±2.84 22.67±4.08 1.769 0.082
AFT 18.57±4.34 16.35±4.29 2.083 0.041

Executive function
Stroop test-A 24.00±0.00 23.97±0.19 1.000 0.326
Stroop test-B 23.20±1.86 21.83±2.77 2.279 0.027

Stroop test-A (s) 13.84±3.98 13.30±2.60 0.632 0.530
Stroop test-B (s) 34.78±18.47 41.73±10.33 -1.812 0.075
Spatial function

JLO 463.11±32.27 380.48±59.78 7.098 < 0.001
ST 235.37±19.41 204.58±43.96 3.754 < 0.001

Figure 4. Dynamic temporal properties of dFNC states. A-D Cluster centroids for each state; E-H Functional connectivity in each state. 

A fraction time; B mean dwell time; C number of transitions; The middle horizontal line represents the mean value, and the upper and lower hori-
zontal lines represent the standard deviations. aMCI: amnestic mild cognitive impairment; HCs: healthy controls; *: P < 0.05.

A

Table 1. Clinical characteristics and neuropsychological testing results.A
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Dynamic network topology analysis
Dynamic network topology analysis, which is based on the 
variance of the dFNC matrix, revealed no significant differenc-
es in global or local efficiency between the two groups (Sup-
plementary Figure 2, P > 0.05).

Multilayer modularity and network switching analysis
Compared with that in HCs (0.90 ± 0.46), the modularity co-
efficient Q in aMCI patients (1.40 ± 1.20) was significantly 
greater (P < 0.05), with gammas = 1 and omegas = 1. Partial 
correlation analysis further revealed a significant negative cor-
relation between the modularity coefficient Q and the SDMT 
score after controlling for age, sex, and education (r = -0.349, P 
= 0.004). However, no significant differences were observed in 
the network switching rates of the six brain networks between 
the groups (Figure 5, P > 0.05). The results for additional pa-
rameter combinations (gammas = [0.9, 1, 1.1] and omegas = 
[0.5, 0.75, 1]) can be found in Supplementary Table 2.

Validation analysis
After applying clustering via the k-means algorithm, the opti-
mal number of clusters was determined via the elbow method, 
resulting in four states (Supplementary Figure 3): state 1 (44%), 
state 2 (10%), state 3 (36%), and state 4 (30%).
Compared with that in HCs, the MDT in state 1 was significant-
ly lower in aMCI patients (P < 0.05), whereas no statistically 
significant differences were observed in the FT or NT across 
the four states between the two groups (Supplementary Figure 
4, P > 0.05).

Discussion

This study investigated the abnormal intrinsic brain functional 
network dynamics in aMCI patients through the application 
of dFNC analysis, dynamic graph theory analysis and mul-
tilayer brain network analysis. K-means clustering analysis 
categorized the brain network into four states, with state 2 
occupying the largest proportion (44%), in which aMCI patients 
demonstrated significantly lower MDTs, indicating the reduced 
stability of the brain network in this state and its strong cor-
relation with cognitive impairment. Although State 4 occurred 
infrequently (8% dwell time), it presented sparse and weak in-
ternetwork connectivity and resembled a transient low-integra-
tion configuration. Furthermore, aMCI patients demonstrated a 
significant increase in the modularity coefficient Q, suggesting 
that the modular structure of the brain network underwent 
alterations, potentially indicating an enhancement in local 
information transmission and a reduction in the coordination 
of the brain network. Although no significant differences were 
observed in graph theory variability analysis or network switch-
ing rates among aMCI patients, the changes in the modularity 
coefficient provide novel insights into brain network reorga-
nization and its role in modulating cognitive function. These 
findings provide important insights into the changes in the 
brain networks of aMCI patients and their relationships with 
cognitive dysfunction, identifying potential biomarkers for fu-
ture research and clinical diagnosis.
In this study, aMCI patients demonstrated a significant de-
crease in MDT scores in state 2, indicating reduced stability 
of brain functional network connectivity in this state and po-

tentially indicating a neural network dysregulation mechanism 
associated with cognitive dysfunction. Further edge analysis 
revealed that aMCI patients demonstrated marked alterations 
in the functional connectivity between several key networks in 
state 2, with reduced connectivity involving mainly the DMN, 
FPN, DAN, and SMN. Specifically, the reduced connectivity 
between the DMN and FPN could disrupt the integration of in-
formation across internal thinking, self-referential processing, 
and higher-order executive functions [41-42], whereas the di-
minished connectivity between the FPN and SMN may reflect 
the dissociation between motor execution and cognitive con-
trol [43], a dysfunction commonly observed in aMCI patients. 
Moreover, the reduction in connectivity between the DAN and 
FPN could further impair the interaction between the regu-
lation of external attention and task-directed control [44]. In 
contrast, aMCI patients demonstrated enhanced connectivity 
between the VAN and DMN, potentially indicating a compen-
satory regulatory mechanism whereby the coupling between 
the visual-attention system and the spontaneous thinking 
system is enhanced to sustain some cognitive functions [45]. 
However, this enhanced VAN–DMN connectivity may reflect 
a compensatory regulatory mechanism in which the coupling 
between the stimulus-driven, bottom-up visual attention sys-
tem and the spontaneous, internally oriented thought system 
is strengthened to support cognitive function, although its ef-
fectiveness and adaptability in aMCI remain uncertain [46-47]. 
Overall, the abnormal alterations in the connectivity patterns 
between these networks may underlie the neural mechanisms 
underlying the reduced time spent in state 2 by aMCI patients, 
providing crucial insights into the functional dysregulation of 
their brain networks.
This study demonstrated a significant increase in the mod-
ularity coefficient Q in aMCI patients, suggesting that the 
modular structure of the brain network underwent alterations. 
The modularity coefficient Q quantifies the degree of cluster-
ing between different functional regions of the brain network, 
and an increase in the Q value could indicate an improvement 
in local information transfer [9, 48]. However, this enhanced 
modular structure could be linked to a reduction in coordina-
tion between different brain regions, suggesting impairment 
of the network's functional integration [49]. In aMCI patients, 
the increase in the modularity coefficient Q could represent 
an adaptive reorganization strategy by the brain to compen-
sate for cognitive function loss, but localized processing of 
information might result in reduced global brain coordination, 
thereby leading to cognitive dysfunction, particularly in com-
plex tasks, such as memory. In clinical practice, changes in 
the modularity coefficient Q provide promising biomarkers for 
the early diagnosis of aMCI, particularly when traditional cog-
nitive assessment tools (such as the MMSE and MoCA) fail to 
identify subtle changes in brain function, as an increase in the 
Q value reflects early brain network abnormalities. In addition, 
the increase in the modularity coefficient Q is strongly inverse-
ly correlated with the decline in cognitive function, particularly 
attention, which further suggests that the modular alterations 
in the brain network are closely linked to cognitive impairment 
in aMCI patients.
Although significant differences were observed in the modu-
larity coefficient Q, no notable differences were found in the 
dynamic network topology or network switching rates among 
aMCI patients. Dynamic network topology analysis provides 
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assessments of the global and local efficiencies of the brain 
network as it changes over time, which may reveal the stability 
of neural connectivity and the efficiency of information transfer 
[50]. However, our results revealed no significant differences 
in these metrics between aMCI patients and healthy controls, 
suggesting that despite alterations in the modular structure 
of the brain network in aMCI patients, the overall efficiency of 
network connectivity has not been significantly compromised. 
This finding could suggest the brain's capacity for adaptation 
under various cognitive states, particularly since no apparent 
impairment in task-switching ability or processing speed was 

Figure 5. Network switching rates of the six brain networks.

Red lines represent P values, and blue lines represent T values.

observed. This finding may also correlate with the reduction 
in MDT observed in state 2 of the dFNC analysis, indicating 
that while aMCI patients exhibit poorer network stability, the 
brain remains capable of preserving a certain level of network 
efficiency and adaptability. Therefore, while dynamic network 
topology analysis did not reveal significant group differences, 
the changes in the modularity coefficient Q provide a clearer 
understanding of network functional reorganization and cog-
nitive decline in aMCI patients. Future research should further 
explore the underlying mechanisms and clinical implications 
of these findings.

A



9

https://doi.org/10.71321/bgaxq397

Despite the important insights yielded by this study into the 
abnormal intrinsic brain functional network dynamics in aMCI 
patients, several limitations should be acknowledged. First, the 
relatively small sample size may reduce the statistical power 
and limit the generalizability of the findings. Larger cohorts are 
needed to validate these observations and explore potential 
subtype differences within aMCI patients. Second, while this 
study employed sliding-window analysis to examine dynamic 
functional connectivity, the cross-sectional design precludes 
investigation of how these network dynamics evolve over time. 
Longitudinal studies with repeated neuroimaging and cog-
nitive assessments are necessary to track the temporal tra-
jectory of network changes and clarify their role in predicting 
disease progression. Third, although age, sex, and education 
were controlled as covariates, other potentially influential fac-
tors—such as genetic risk (e.g., APOE status), vascular health, 
sleep quality, subthreshold depressive symptoms and lifestyle 
factors—were not assessed and may confound the observed 
associations. Finally, the study was conducted at a single cen-
ter within a limited geographic region, which may introduce se-
lection bias. Future multicenter studies involving more demo-
graphically and ethnically diverse populations are warranted to 
enhance the external validity of the findings.

Conclusion

In conclusion, this study provides valuable insights into the 
abnormal intrinsic brain functional network dynamics in aMCI 
patients, highlighting significant alterations in brain network 
connectivity, particularly in dFNC, the modularity coefficient Q, 
and network topology. These findings suggest that aMCI pa-
tients exhibit reduced stability in certain brain network states, 
particularly in state 2, as indicated by decreased MDT and 
alterations in modularity that reflect a shift in the brain's net-
work organization. Despite the lack of significant differences 
in global network efficiency, the increase in modularity and its 
correlation with cognitive decline point to the potential of using 
network metrics, such as the modularity coefficient Q, as bio-
markers for the early diagnosis and monitoring of aMCI. These 
results underscore the importance of dynamic brain network 
analysis in understanding the neurobiological underpinnings of 
cognitive dysfunction in aMCI patients and provide a founda-
tion for future longitudinal studies and clinical applications to 
track disease progression and develop targeted interventions. 
However, further research with larger, more diverse cohorts 
and longitudinal designs is needed to validate these findings 
and explore their clinical utility in real-world settings.
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