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Abstract

Schizophrenia, depression, and bipolar disorder are highly heritable psychiatric illnesses that share overlapping symptoms but also exhibit dis-
order-specific features. To dissect the cellular and developmental mechanisms underlying genetic risk, we integrated large-scale genome-wide 
association study (GWAS) data with human cortical single-nucleus RNA sequencing (snRNA-seq) data spanning gestation to adulthood (>700,000 
nuclei from 106 donors). Gene-based analyses revealed 104 shared genes across disorders and convergent enrichment in synaptic pathways, 
alongside disorder-specific signals such as metal ion transport in schizophrenia. Using the single-cell disease relevance score (scDRS), we 
mapped polygenic risk across cortical cell types and developmental windows. Excitatory neurons were consistently implicated across all disor-
ders from postnatal stages through adulthood, while inhibitory neurons showed broader vulnerability in depression and bipolar disorder, extend-
ing into the fetal period. Glial cells demonstrated disorder specificity: astrocytes were implicated across disorders during early postnatal synap-
togenesis, oligodendrocyte precursor cells (OPCs) showed prolonged associations in depression, and mature oligodendrocytes were uniquely 
implicated in schizophrenia during childhood. These findings highlighted excitatory-inhibitory imbalance as a shared mechanism, alongside 
distinct glial and developmental trajectories contributing to disorder-specific pathophysiology. Our findings help to highlight the cortical cell types 
and developmental windows through which psychiatric genetic risk may act, offering insights into potential critical periods for intervention.
Keywords: Psychiatric disorders; Genome-wide association study ; Single-nucleus RNA sequencing; Cell type-specific risk; Neurodevelopmental 
trajectories.
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Introduction

Schizophrenia, depression and bipolar disorder are highly 
burdensome psychiatric illnesses [1]. Despite their clinical het-
erogeneity, these disorders frequently exhibit comorbidity and 
overlapping symptoms [2, 3], which aligns with the dimension-
al-continuum models of psychiatric risk. These models con-
ceptualize psychiatric illnesses along continuous dimensions 
rather than as discrete categories, emphasizing that multiple 
interacting domains, such as cognition and emotion, jointly 
contribute to psychiatric symptoms and their shared neuro-
biological basis [4-6]. Large-scale genome-wide association 
studies (GWASs) have revealed substantial genetic correla-
tions across psychiatric disorders, suggesting a shared poly-
genic architecture as well as disorder-specific components [7-
13]. While these genetic studies have uncovered hundreds of 
associated loci, the mechanisms by which risk variants act on 
specific cell types and developmental windows, as well as the 

similarities and differences of these mechanisms across dis-
eases, remain incompletely understood.
The cerebral cortex constitutes a fundamental pathophysio-
logical substrate for psychiatric disorders. It is essential for 
higher-order cognitive and emotional processes, and converg-
ing evidence from neuroimaging studies has demonstrated 
cortical abnormalities across schizophrenia, depression, and 
bipolar disorder [14-17]. Increasing evidence indicates that 
the effects of psychiatric risk variants are dependent on neu-
rodevelopmental context, particularly during fetal and early 
postnatal stages [18-21]. For example, genetic risk factors for 
schizophrenia primarily act during early cortical development, 
perturbing neuronal circuit formation and synaptic organiza-
tion in ways that predispose to later disease manifestation [18]. 
Moreover, shared genetic risk across psychiatric disorders has 
been shown to regulate genes expressed in developing neo-
cortex during midgestation [21]. Therefore, linking polygenic 
risk to cortical cell types across developmental stages helps 



33

https://doi.org/10.71321/ftnk8985

identify when and where genetic risk arises, providing insight 
into how psychiatric disorders develop.
Advances in single-nucleus RNA sequencing (snRNA-seq) now 
provide improved resolution to map gene expression across 
diverse cortical cell types and developmental stages [22, 23]. 
These datasets enable dissection of how disease-associated 
genes are expressed across different cell types and develop-
mental stages. Integrating GWAS with single-cell transcriptom-
ic data has emerged as a powerful approach to link genetic 
risk with cellular contexts [24, 25]. In particular, the single-cell 
disease relevance score (scDRS) framework allows polygenic 
risk to be projected onto individual cells, thereby quantifying 
disease relevance across cell types and developmental time 
[26].
In this study, we integrated GWAS summary statistics of 
schizophrenia, depression, and bipolar disorder with large-
scale human cortical snRNA-seq data spanning from the sec-
ond trimester of gestation to adulthood. We aimed to identify 
shared and disorder-specific genes and pathways, determine 
the cellular and developmental distribution of polygenic risk, 
and disentangle common versus distinct biological mecha-
nisms across major psychiatric disorders. 

Materials and Methods

GWAS datasets 
To investigate the cellular mechanisms through which genetic 
risk contributes to major psychiatric disorders, we analyzed 
GWAS summary statistics of European ancestry for depres-
sion (Ncase = 294,322, Ncontrol = 741,438) [8], bipolar disorder 
(Ncase = 41,917, Ncontrol = 371,549) [9] and schizophrenia (Ncase 
= 53,386, Ncontrol = 77,258) [7]. For depression, cases were 
defined based on multiple criteria, including the International 
Classification of Diseases (ICD), self-reported depression, or 
questionnaire-based assessments. Control participants were 
drawn from population-based cohorts, excluding individuals 
with any diagnosis of depression. For bipolar disorder, all cas-
es met international diagnostic criteria, including the Diagnos-
tic and Statistical Manual of Mental Disorders (DSM) and ICD, 
while controls had no psychiatric history. For schizophrenia, di-
agnoses were based on DSM or ICD criteria, structured clinical 
interviews, medical record reviews, consensus diagnoses, and 
scale-assisted assessment. Controls were individuals without 
a history of psychiatric disorders or were randomly selected 
from the population. As these GWAS represent meta-analyses 
of multiple cohorts, detailed information on study design, diag-
nostic procedures, and quality control is available in the origi-
nal publications.

Human cortex single-nucleus RNA sequencing dataset from 
gestation to adulthood
We used snRNA-seq gene expression data from human cere-
bral cortex, spanning developmental stages from the second 
trimester of gestation to adulthood (fourth last menstrual 
period month human stage to 54 years old). The study ana-
lyzed >700,000 single-nucleus RNA sequencing profiles from 
106 donors (45 female and 61 male subjects) [23]. The devel-
opmental stages included the second trimester of gestation 
(31 donors), the third trimester of gestation (12 donors), 0-1 
years (11 donors), 1-2 years (4 donors), 2-4 years (10 donors), 

4-10 years (8 donors), 10-20 years (17 donors) and adulthood 
(>20 years,13 donors). Preprocessing of the snRNA-seq data 
was carried out using Scanpy (single-cell analysis in python, 
v 1.10.1, http://scanpy.readthedocs.io/en/stable/index.
html) [27]. Each cell was assigned a predefined cell type and 
developmental stage [23]. The cell types included excitato-
ry neurons, inhibitory neurons, glial progenitors, astrocytes, 
oligodendrocyte precursor cells (OPCs), oligodendrocytes, 
microglia, and vascular cells. We filtered out cells expressing 
fewer than 250 genes and genes expressed in fewer than 50 
cells, 704,080 single nuclei transcriptome profiles × 17,589 
genes remained in the snRNA-seq data. Following the filtering, 
we normalized the snRNA-seq data matrix. Each cell was nor-
malized by total counts over all genes, enabling comparison 
of gene expression levels across cells. The normalized data 
matrix was then logarithmized to stabilize variance for further 
analyses. Batch correction was applied to the dataset [23], 
with gene counts and sex included as covariates for the scDRS 
analysis. 

MAGMA
MAGMA (v1.10, https://cncr.nl/research/magma/) [28] was 
used to construct gene sets for schizophrenia, depression, 
and bipolar disorder based on GWAS summary statistics. We 
performed these analyses using genome-wide summary data. 
Gene boundaries were defined based on Ensembl release 102 
(GRCh37) and extended by 35 kb upstream and 10 kb down-
stream to incorporate potential regulatory regions. Linkage 
disequilibrium was estimated from the European reference 
panel of the 1000 Genomes Project (Phase 3) [29]. Gene-
based association testing was performed in MAGMA using the 
SNP-wise Mean model. Gene-level P-values were derived from 
the exact distribution of the sum of squared z-scores using the 
Imhof method and were subsequently converted to gene-level 
z-scores. For each disorder, the top 1,000 genes with the high-
est MAGMA gene-level z-scores were selected, restricting to 
genes that passed quality control in the snRNA-seq dataset.

Over-representation analysis
To investigate the functional enrichment of disorder-associ-
ated genes, over-representation analysis was conducted for 
each disorder using the ToppGene Suite (https://toppgene.
cchmc.org/) [30]. For each over-representation analysis, the 
input gene set comprised the top 1,000 genes ranked by 
MAGMA gene-level z-scores, which were tested against the 
ToppGene Suite's default background of all genes annotated 
for Gene Ontology (GO) biological process terms (n = 20,557). 
In this analysis, we specifically selected the GO biological 
process database, as our primary objective was to clarify and 
compare the biological processes underlying the genetic ar-
chitecture of schizophrenia, depression, and bipolar disorder. 
Restricting the analysis to a single database also helped mini-
mize gene set redundancy and reduced the inflated burden of 
multiple testing. Statistical significance was assessed using a 
hypergeometric test, and P-values were adjusted for multiple 
testing using the Bonferroni correction.

Single-cell disease relevance score (scDRS)
We used scDRS (v1.0.4, https://github.com/martinjzhang/
scDRS) [26] to investigate the cellular targets of schizophrenia, 
depression, and bipolar disorder through polygenic score at 
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single-cell resolution. For each snRNA-seq cell, scDRS comput-
ed a disease relevance score by aggregating the expression 
of the top 1,000 associated genes (default parameter setting 
in scDRS), followed by normalization. To determine statistical 
significance, 1,000 sets of Monte Carlo control scores were 
generated and normalized. One-sided cell-level P values were 
computed by comparing each cell’s normalized disease rele-
vance score to the empirical distribution of control scores. Uni-
form Manifold Approximation and Projection (UMAP, v0.5.6) 
[31] is a nonlinear dimensionality reduction technique, which 
was used for visualizing the structure of snRNA-seq data in 
two dimensions. Cell type-level analyses aggregated individual 
cell-level results to identify cell types associated with the three 
psychiatric disorders. Although scDRS retains sufficient power 
even for small cell numbers [26], we excluded cell types in spe-
cific developmental stages with fewer than 50 cells. Conse-
quently, scDRS results for 704,072 single nuclei were retained 
for cell type-level analyses. Each cell was assigned to a unique 
combination of cell type and developmental stage based on 
its annotation; therefore, no cell was counted in more than one 
category. P values for both cell-level and cell type-level analy-
ses were adjusted using false discovery rate (FDR) correction 
to control for multiple hypothesis testing.

Sensitivity analysis of gene selection threshold
To assess the robustness of our results to gene selection crite-
ria, we performed sensitivity analyses using alternative thresh-
old for MAGMA-prioritized genes per disorder. In the original 
scDRS study [26], six strategies were evaluated, including the 
top 100, 500, 1,000, 2,000, as well as those based on fami-
ly-wise error rate (FWER) < 5%, and FDR < 1%. The default top 
1,000 gene set substantially outperformed all other versions, 
except for the top 2,000 gene set, which showed comparable 
performance but slightly poorer calibration. Therefore, we se-
lected the top 2,000 gene set for sensitivity analysis to further 
validate the robustness of our findings. 

Results

Disease-associated genes and pathways
For each disorder, we extracted the top 1,000 associated 
genes and assessed their overlap (Supplementary Table 1 and 
Figure 1a). A total of 104 genes were shared across schizo-
phrenia, depression, and bipolar disorder, highlighting their 
pleiotropic genetic architecture, whereas 517, 642, and 563 
genes were disorder-specific for schizophrenia, depression, 
and bipolar disorder, respectively. Pathway enrichment analy-
sis (Bonferroni-corrected P < 0.05) identified 34 pathways for 
schizophrenia (Supplementary Table 2), 50 for depression 
(Supplementary Table 3), and 21 for bipolar disorder (Supple-
mentary Table 4), with nine shared pathways primarily related 
to synaptic processes (Figure 1b-e), such as synapse organi-
zation (Pc = 1.52 × 10-7 for schizophrenia, Pc = 2.67 × 10-10 for 
depression, Pc = 1.24 × 10-2 for bipolar disorder) and synaptic 
signaling (Pc = 1.85 × 10-7 for schizophrenia, Pc = 4.19 × 10 -9 
for depression, Pc = 3.18 × 10-6 for bipolar disorder). Depres-
sion- and schizophrenia-associated pathways were enriched 
for generation of neurons (Pc = 2.17 × 10-8 for schizophrenia, 
Pc = 1.87 × 10 -10 for depression) and neuron differentiation (Pc 
= 7.80 × 10-9 for schizophrenia, Pc = 2.66 × 10 -10 for depres-

sion), while schizophrenia- and bipolar disorder shared enrich-
ment in regulation of synaptic plasticity (Pc = 8.87 × 10-3 for 
schizophrenia, Pc = 2.79 × 10-2 for bipolar disorder). Schizo-
phrenia-specific pathways were significantly enriched in GAB-
Aergic synaptic transmission (Pc = 1.09 × 10-2 ) and metal ion 
transport (Pc = 1.67 × 10 -2 ). These findings reveal both shared 
and disorder-specific molecular mechanisms, with convergent 
enrichment in synaptic pathways across disorders, and schizo-
phrenia showing additional specificity in GABAergic transmis-
sion and ion transport.

Developmental and cell-type specificity of risk genes
We next applied scDRS analysis to snRNA-seq data spanning 
eight major brain cell types (Figure 2a) across eight develop-
mental stages (Figure 2b). First, we calculated a scDRS for 
each cell in the snRNA-seq datasets based on the genes as-
sociated with schizophrenia, depression, and bipolar disorder, 
and projected these scores onto UMAP plot (Figure 2c). At the 
single-cell level, scDRS showed that genes associated with all 
three psychiatric disorders were highly expressed in excitatory 
and inhibitory neurons, particularly during postnatal stages. 
Schizophrenia and depression genes also exhibited elevated 
scDRS in OPCs, while schizophrenia genes showed higher 
scDRS in mature oligodendrocytes compared with depression 
and bipolar disorder. 
We then performed cell-type-level analyses to associate pre-
defined cell types at different developmental stages with these 
disorders. In total, the analyses identified 19 significant cell 
type-schizophrenia pairs, 21 for depression, and 14 for bipolar 
disorder (FDR < 0.05, Monte Carlo test; Supplementary Tables 
5-7). The analysis demonstrated that excitatory neurons were 
associated with schizophrenia, depression, and bipolar disor-
der spanning the postnatal period through adulthood. All three 
disorders were also significantly associated with inhibitory 
neurons, but with distinct temporal windows. In schizophrenia, 
inhibitory neuron associations were mainly postnatal, where-
as in depression and bipolar disorder, associations extended 
from the third trimester through adulthood (Figure 2d). These 
results emphasized that excitatory and inhibitory neuronal 
dysfunction was recognized as a foundational element across 
major psychiatric disorders. The broader vulnerability window 
may reflect the early involvement of GABAergic interneurons 
in depression and bipolar disorder. Our findings emphasized 
the temporal association of excitatory and inhibitory neurons 
with schizophrenia, depression, and bipolar disorder during the 
postnatal period. This observation aligned with the develop-
mental trajectories of glutamatergic synapse density, dendritic 
arborization, and mesocortical dopaminergic projections, all of 
which continue to mature after birth [18], thereby underscoring 
the critical role of neural circuit development in the pathophys-
iology of schizophrenia, depression, and bipolar disorder.
Glial cells demonstrated disorder-specific associations. As-
trocytes were consistently associated with all three disorders 
during the 1-2 years stage, a period coinciding with active 
synaptogenesis [32, 33] and gliogenesis [34, 35], highlighting 
the importance of early postnatal glial maturation for neurode-
velopmental vulnerability to psychiatric disorders. OPCs were 
linked to schizophrenia and depression, with depression span-
ning from the third trimester through adulthood, while schizo-
phrenia was restricted to 0-4 years (Figure 2d). Mature oligo-
dendrocytes were only associated with schizophrenia during 
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Figure 1. Gene- and pathway-level analyses of three psychiatric disorders. a. Venn diagram shows the number of genes identified by gene-
based association tests and their overlap among the three psychiatric disorders. b. Venn diagram shows the number of pathways identified by 
statistical over-representation analysis and their overlap among the three disorders. c-e, Bubble plots display the enriched Gene Ontology (GO) 
biological process terms (Bonferroni-corrected P < 0.05) for depression (c), bipolar disorder (d), and schizophrenia (e). The x-axis represents the 
significance level of each term, while the y-axis lists the GO terms. Bubble color indicates significance, and bubble size represents the number of 
genes enriched in each term.

1-10 years. OPCs could differentiate into mature oligodendro-
cytes to form myelin sheaths, support axonal metabolism, and 
participate in neuroplasticity [36]. The distinct temporal pat-
terns observed for oligodendrocyte lineage cells suggest dis-
order-specific vulnerabilities in white matter development. The 
prolonged association for depression may reflect impaired dif-
ferentiation or maintenance of OPCs, consistent with reports 

of widespread white matter abnormalities and disrupted oli-
godendrocyte function in depression [36]. Schizophrenia was 
associated not only with OPCs within a narrow window (0-4 
years) but also subsequently with mature oligodendrocytes. 
These findings highlight a critical developmental period during 
which disrupted myelination may compromise long-range 
connectivity, consistent with the neurodevelopmental model 

A
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Figure 2. Associations of human cortical cells with risk genes for schizophrenia, depression, and bipolar disorder. a-b, UMAP (uniform manifold 
approximation and projection) visualization of human cortical cells, with cluster labels indicating annotated cell types (a) and developmental 
stages (b). c, UMAP visualizations display the disease relevance score for schizophrenia, depression and bipolar disorder assigned to each cell. 
d, Cell type-level scDRS analysis for the three psychiatric disorders. The y-axis represents the -log10 (P values) of the cell type-level analyses of 
human cortical cells for the three psychiatric disorders, grouped by cell types and developmental stages (x-axis, with number of cells indicated 
in parentheses). Asterisks denote significant cell type-disease associations (FDR < 0.05 across 56 cell types in different developmental stages). 
ExN, excitatory neuron; InN, inhibitory neuron; GPC, glial progenitor cell; Astro, astrocyte; OPC, oligodendrocyte precursor cell; Oligo, oligodendro-
cyte; Micro, microglia; VASC, vascular cell.

of schizophrenia [37, 38]. Together, these results suggest that 
depression may be characterized by chronic deficits in OPCs 
function, while schizophrenia reflects postnatal developmental 
failures in oligodendrocyte maturation and myelination. This 
distinction underscores the importance of temporally resolved 
glial mechanisms in contributing to disorder-specific patho-

physiology.

Disorder-specific scDRS trajectories across cell types and 
developmental windows
We next compared average scDRS scores for schizophre-
nia, depression, and bipolar disorder across developmental 

A
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stages in the associated cell types (Figure 3). In both excit-
atory and inhibitory neurons, depression exhibited the highest 
postnatal scDRS scores, with a pronounced peak during the 
1-2 years stage. In astrocytes, all three disorders demonstrat-
ed scDRS peaks during 1-2 years. Striking differences were 
observed in OPCs, where depression consistently showed the 
highest scores across the lifespan, followed by schizophrenia 
and then bipolar disorder, highlighting more persistent OPCs 
vulnerability in depression. By contrast, in mature oligodendro-
cytes, schizophrenia exhibited the highest scores, providing 
strong support for the established model of myelination defi-
cits and white matter abnormalities as central pathophysiolog-
ical features of schizophrenia [37, 38]. 

Robustness of disease-cell associations to gene set size
To evaluate the robustness of our findings to the choice of 
gene selection threshold in scDRS, we performed a sensitiv-
ity analysis using the top 2,000 MAGMA-prioritized genes. 
The developmental trajectories of scDRS derived from top 
2,000 MAGMA-prioritized genes were highly consistent with 
our primary analysis based on the top 1,000 genes (Figure 
4). Although the larger gene set yielded slightly attenuated 
calibration, the developmental trajectories of scDRS and the 
distinctions between disorders remained largely consistent, 

Figure 3. Developmental trajectories of scDRS in human cortical cells for three psychiatric disorders. These plots display the average scDRS 
(y-axis) for schizophrenia, depression, and bipolar disorder in five major cortical cell types: excitatory neuron (a), inhibitory neuron (b), astrocyte 
(c), oligodendrocyte precursor cell (OPCs, d), and oligodendrocyte (e). The developmental window spans from the second trimester of gestation 
to adulthood (x-axis). Prenatal stages for oligodendrocyte were excluded due to low cell counts (n < 50).

indicating that our findings are robust to variations in gene se-
lection strategy.

Discussion

Our integrative analysis provides novel insights into the cell 
type- and developmental stage-specific mechanisms under-
lying schizophrenia, depression, and bipolar disorder. At the 
gene and pathway level, we observed a substantial overlap of 
associated genes and convergent enrichment in synaptic pro-
cesses, consistent with the view that synaptic dysfunction is 
a core feature across major psychiatric disorders [39]. At the 
same time, disorder-specific enrichments, such as metal ion 
transport for schizophrenia, point to unique pathophysiological 
features.
At the cellular level, excitatory neurons were consistently 
implicated across disorders from postnatal stages through 
adulthood, underscoring glutamatergic dysfunction as a 
shared substrate of psychiatric illness. Inhibitory neurons also 
showed significant associations, but with broader temporal 
vulnerability in depression and bipolar disorder, extending back 
to the fetal period. This aligns with prior studies reporting a 
widespread excitatory-inhibitory imbalance in these conditions 

A
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Figure 4. Developmental trajectories of scDRS across human cortical cell types for three psychiatric disorders using the top 2,000 disease-re-
lated genes. These plots display the average scDRS (y-axis) for schizophrenia, depression, and bipolar disorder in five major cortical cell types: 
excitatory neuron (a), inhibitory neuron (b), astrocyte (c), oligodendrocyte precursor cell (OPCs, d), and oligodendrocyte (e). The developmental 
window spans from the second trimester of gestation to adulthood (x-axis). Prenatal stages for oligodendrocyte were excluded due to low cell 
counts (n < 50).

[40-42]. Together, these results emphasize that excitatory-in-
hibitory imbalance is a unifying mechanism, but with disor-
der-specific developmental timing.
Glial cell associations demonstrated greater disorder specific-
ity. Astrocytes were consistently implicated across disorders 
during the 1-2 years, coinciding with peaks in synaptogenesis 
and gliogenesis [32-35]. OPCs showed prolonged associations 
in depression, suggesting persistent progenitor dysfunction, 
whereas schizophrenia was linked to a narrower early child-
hood window, with mature oligodendrocytes uniquely impli-
cated. This distinction suggests that depression may involve 
chronic impairments in OPC differentiation or maintenance, 
while schizophrenia reflects postnatal developmental failures 
in oligodendrocyte maturation and myelination, consistent 
with white matter abnormalities observed in these disorders 
[36, 43].
A key limitation of our study is that we rely on snRNA-seq 
data from healthy human brains to annotate disease risk. This 
approach assumes that the transcriptional and regulatory re-
lationships captured in healthy tissues largely reflect those in 
disease states, an assumption commonly adopted due to the 
limited availability of high-quality disease-specific single-cell 
datasets resources. However, disease-related changes, such 

as altered cell composition, cell-state transitions, and regula-
tory network remodeling, may influence the generalizability of 
our findings. Accordingly, our findings should be interpreted as 
reflecting putative risk-enriched cell types under baseline con-
ditions rather than direct causal effects in disease states. Fu-
ture studies incorporating disease-specific single-cell datasets 
will be essential to refine these interpretations. Furthermore, 
although a smaller number of cells should not substantially 
affect the scDRS power, the imbalance in the number of cells 
captured across cell types and developmental stages may in-
troduce potential biases in estimating disease-associated cell 
types. These proportions not only reflect the intrinsic cellular 
composition of the human cerebral cortex at different develop-
mental stages but are also influenced by variation in the num-
ber of donors contributing to each stage. 
Overall, our findings highlight both convergent and distinct 
neurodevelopmental trajectories across psychiatric disorders, 
emphasizing the importance of temporally resolved analyses 
to disentangle shared and disorder-specific mechanisms. This 
cellular and developmental mapping of polygenic risk may in-
form strategies for targeted interventions at critical windows 
of vulnerability.

A
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