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Abstract

Primary headaches such as migraine, cluster headache (CH), and tension-type headache (TTH) are highly prevalent neurological disorders with 
complex and heterogeneous pathophysiology. Traditionally attributed to either vascular or neuronal origins, current evidence supports a neuro-
vascular model involving dynamic interactions between the nervous system and cranial. This Perspective examines the role of two key neuro-
peptides – calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating polypeptide (PACAP) – in the generation of primary 
headaches. CGRP is a validated target in migraine, but its clinical utility is limited by biomarker instability and a significant proportion of non-re-
sponders. PACAP is emerging as a complementary target, though its receptor mechanisms remain incompletely understood. While neither CGRP 
nor PACAP appear to play a major role in TTH, their contribution to migraine and CH highlights the need for precision approaches based on mo-
lecular endophenotypes. Understanding these mechanisms may inform the development of more effective, personalized headache treatments.
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Headache mechanisms: what we still do not know

Introduction

Primary headaches such as migraine, cluster headache (CH), 
and tension-type headache (TTH) represent a significant 
burden for patients and healthcare systems worldwide [1]. 
Despite advances in symptomatic and preventive treatments, 
many aspects of their underlying mechanisms remain incom-
pletely understood, contributing to the variability in therapeutic 
response and the lack of predictive biomarkers. Traditionally, 
primary headaches were conceptualized as either purely vas-
cular or purely neuronal disorders [2]. However, accumulating 
evidence now supports a more integrated neurovascular 
perspective, in which complex and dynamic interactions be-
tween the nervous system and cranial vasculature contribute 
to headache pathophysiology [3]. Among the most studied 
mediators in this context are the trigeminovascular neuropep-
tides – calcitonin gene-related peptide (CGRP) and pituitary 
adenylate cyclase-activating polypeptide (PACAP). In addition 
to CGRP and PACAP, several other neuropeptides have been 
implicated in headache disorders, including substance P, neu-
rokinin A, nerve growth factor, beta-endorphin, and neuron-spe-

cific enolase, each contributing through diverse pathways. 
These peptides have been shown to trigger migraine attacks 
when administered experimentally and have become key 
targets in the development of new preventive therapies [4,5]. 
However, the mechanistic roles of CGRP and PACAP differ 
across headache types, and their clinical utility as biomarkers 
or universal targets remains limited by biological complexity 
and patient heterogeneity. This mini-review discusses current 
knowledge and open questions regarding the mechanisms of 
primary headaches, with a focus on the vascular vs. neuronal 
debate, the central yet partial role of CGRP, and the emerging 
but still puzzling contribution of PACAP. Special attention is 
given to how these mechanisms differ across migraine, cluster 
headache, and tension-type headache, and what these insights 
mean for the future of targeted therapies (Figure 1).

Neuronal vs. Vascular Origin

The longstanding debate over whether headaches – particu-
larly migraine – arise from a primary vascular disturbance or 
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a neuronal dysfunction remains unresolved [6]. Historically, 
the vascular theory prevailed, grounded in the observation that 
cerebral vessels are pain-sensitive, and that vasoconstrictors 
such as ergotamine could alleviate attacks [7,8]. However, ac-
cumulating neuroimaging and neurophysiological data have 
shifted the focus toward a neurogenic origin [9]. Studies re-
vealing early activation of brainstem and hypothalamic nuclei 
prior to pain onset suggest that vasodilation may be a second-
ary phenomenon, rather than the initiating event. Rather than 
endorsing a binary view, modern understanding favors a neu-
rovascular model, recognizing that headache disorders likely 
emerge from complex and bidirectional interactions between 
neural and vascular components [10]. A compelling example 
of this complexity comes from human provocation studies 
with vasoactive intestinal peptide (VIP). A short 20-minute 
infusion of VIP failed to induce migraine in individuals with a 
history of migraine without aura [11], yet when infused over 
two hours, VIP provoked migraine attacks in over 70% of par-
ticipants [12]. These findings indicate that headache induction 
is not solely a function of vasodilation, but depends on the du-
ration, context, and downstream molecular consequences of 
vascular activation. Sustained vascular changes may interact 
with perivascular peptidergic fibers, particularly sensory neu-
rons of the trigeminovascular system, to create a permissive 
environment for nociceptive activation. This neurovascular 
cross-talk likely involves reciprocal signaling between vascular 
smooth muscle cells, endothelial cells, immune components 
(such as mast cells), and sensory afferents, all of which can 
dynamically modulate the threshold for pain initiation. Central 
to this process is the release of key neuropeptides like CGRP 
and substance P [13]. These peptides promote vasodilation, 
mast cell degranulation, and sterile neurogenic inflammation in 
the meninges, events that can serve as both triggers and am-
plifiers of pain in genetically susceptible individuals. Advanced 
neuroimaging studies highlight the role of central brain net-
works, particularly within the hypothalamus and brainstem, as 
potential generators of migraine attacks. These regions may 
contribute to the disruption of homeostatic regulation, thereby 
increasing susceptibility of the peripheral trigeminovascular 
system to activation [14,15]. The heterogeneity in patient pre-
sentation and therapeutic response suggests that no single 
pathway explains all cases. Instead, the current consensus 
embraces the idea of dynamic and individualized neurovascu-
lar interactions, which may differ across clinical phenotypes 

Figure 1. Neurovascular Mechanisms in Primary Headaches at the 
Trigeminovascular Interface. CH: cluster headache. CGRP: calcitonin 
gene-related peptide. PACAP: pituitary adenylate cyclase-activating 
polypeptide. TTH: tension-type headache.

and genetic backgrounds. Clinical heterogeneity across pri-
mary headache subtypes may be explained, at least in part, by 
the relative contribution of neuronal and vascular mechanisms 
within the neurovascular model. Cluster headache is charac-
terized by profound cranial autonomic features and hypotha-
lamic involvement, suggesting a strong vascular-autonomic 
component that may act as a driver rather than a consequence 
of pain [16]. Tension-type headache, by comparison, lacks con-
sistent evidence of either vasodilation or neuropeptide involve-
ment, and may instead reflect dysfunctional central pain pro-
cessing with minimal peripheral input [17]. These distinctions 
suggest that while neurovascular interactions are a common 
framework, the dominance of one mechanism over the other 
may vary by subtype and even within individual patients over 
time. Acknowledging this variability is key to developing more 
personalized and mechanism-based treatments.

CGRP: Key Player, but not the Whole Story

CGRP is widely recognized as a central mediator in migraine 
pathophysiology [18]. Elevated levels of CGRP have been 
observed during spontaneous and experimentally induced 
migraine attacks, and the efficacy of CGRP-targeted therapies 
has validated its mechanistic relevance. Currently approved 
CGRP-targeted therapies include monoclonal antibodies 
against the ligand (eptinezumab, fremanezumab, galcanezum-
ab) or the receptor (erenumab), as well as small-molecule re-
ceptor antagonists (rimegepant, ubrogepant, and atogepant). 
These agents have shown moderate to high efficacy in reduc-
ing monthly migraine days and acute attack severity in ran-
domized controlled trials [19]. However, despite its biological 
plausibility, CGRP has not yet emerged as a reliable clinical bio-
marker. Its concentration fluctuates considerably depending 
on the biological matrix analyzed (e.g., jugular vs. peripheral 
blood, plasma vs. serum), the migraine phase (ictal vs. interic-
tal), and the analytical methodology employed (e.g., RIA, ELISA, 
or EIA) [20]. In addition to this variability, CGRP is highly labile, 
with a short half-life of 7-9 minutes, and is sensitive to pre-ana-
lytical handling and degradation during sample processing [21]. 
To overcome these limitations, recent studies have explored 
alternative biological fluids such as saliva and tear fluid, which 
are more directly innervated by the trigeminal system and ex-
hibit higher CGRP concentrations. These methods, which allow 
for non-invasive and repeated self-sampling, have suggested 
the existence of CGRP-dependent and CGRP-independent 
migraine attacks, supporting the existence of biologically dis-
tinct migraine endophenotypes [22,23]. Nonetheless, these 
promising findings remain preliminary and require confirma-
tion through larger, well-controlled, and standardized studies. 
Another limitation of CGRP-targeted therapy is the presence 
of non-responders, a phenomenon consistently observed in 
real-world settings. Approximately 30-40% of patients with 
migraine – particularly those with chronic forms – do not 
experience meaningful benefit from monoclonal antibodies 
targeting the CGRP ligand or receptor [24]. Notably, some pa-
tients remain unresponsive even after switching between ther-
apeutic targets (ligand vs. receptor), suggesting that CGRP is 
not the sole driver of migraine pain. Other neuropeptides, such 
as PACAP, substance P, and neurokinin A, may contribute inde-
pendently or synergistically to headache generation. Several 
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mechanisms have been proposed to explain the substantial 
proportion of patients who do not respond to CGRP-targeted 
therapies [25]. One possibility involves genetic polymorphisms 
affecting CGRP receptors or downstream signaling pathways, 
which could alter drug binding or intracellular responses. Re-
ceptor desensitization or internalization, particularly with pro-
longed exposure to monoclonal antibodies, may also diminish 
clinical efficacy over time. Alternatively, non-CGRP pathways 
may become upregulated in non-responders, creating redun-
dant or compensatory circuits that bypass CGRP inhibition. 
For instance, PACAP expression may be increased in some 
patients as an adaptive mechanism, contributing to persistent 
headache despite CGRP blockade [26]. Other neuropeptides 
such as substance P and neurokinin A may similarly sustain 
nociceptive signaling. In CH, CGRP’s role appears more limited 
and heterogeneous. While galcanezumab demonstrated effi-
cacy in reducing attack frequency in episodic CH, it failed to 
show benefit in the chronic subtype, as did fremanezumab in 
both episodic and chronic forms [27,28]. These findings point 
to a restricted or context-specific involvement of CGRP in CH, 
possibly limited to certain phases or subgroups of patients [29]. 
Given the strong involvement of hypothalamic and autonomic 
circuits in CH pathophysiology, CGRP may function more as a 
modulator than a primary initiator of attacks. In TTH, current 
evidence does not support a relevant role for CGRP. Studies 
measuring its concentration in plasma and cerebrospinal fluid 
have found no significant differences between patients with 
TTH and healthy controls [30,31]. Accordingly, CGRP-targeted 
therapies have not been investigated in this population and are 
unlikely to be of therapeutic value.

PACAP: A Promising but Puzzling Target

Currently approved CGRP-targeted therapies are ineffective 
in approximately 40% of migraine patients [24], leading to the 
hypothesis that alternative mechanisms such as the PACAP 
pathway may contribute to disease pathophysiology in this 
subgroup. PACAP has emerged as a promising, though com-
plex, therapeutic target across primary headache disorders. 
Sharing 68% sequence homology with VIP, PACAP binds to a 
family of receptors – PAC1, VPAC1, and VPAC2 – which are 
widely expressed in migraine-relevant anatomical sites such 
as the trigeminal ganglia, sphenopalatine ganglia, and cranial 
blood vessels [32-34]. A recent proof-of-concept trial using a 
neutralizing antibody against circulating PACAP demonstrated 
a reduction in monthly migraine days in patients with prior fail-
ure to at least two preventive therapies [35]. Although the trial 
was limited by its short duration (4 weeks) and small sample 
size, it offers an encouraging signal for the development of 
PACAP-targeted strategies as an alternative to CGRP-directed 
therapies. However, the precise receptor mechanisms under-
lying PACAP-induced headache remain unclear. Early efforts 
focused on the PAC1 receptor, given its high affinity for PACAP, 
but a phase II trial of a monoclonal antibody against PAC1 
failed to show superiority over placebo in migraine prevention 
[36]. As a result, researchers have begun to explore the poten-
tial role of VPAC1 and VPAC2 receptors, which bind PACAP 
with equal affinity and may contribute to migraine induction 
[37]. Furthermore, mast cells express MRGPRX2, a receptor 
implicated in PACAP-induced migraine-like behavior in animal 

models [38]. Other targets such as GPR55, initially described 
as a cannabinoid-related receptor, have also been implicat-
ed in pain signaling and sensitization, and may contribute 
to the broader PACAP response [39]. The receptor pathways 
responsible for PACAP-induced migraine remain incompletely 
elucidated, and PACAP’s role across the spectrum of primary 
headaches is still being defined. Systematic comparisons 
across PAC1, VPAC1/2, and MRGPRX2 receptor pathways 
remain limited by the scarcity of receptor-selective ligands 
and the lack of validated antibodies for human tissue studies. 
As a result, mechanistic insights are largely derived from pre-
clinical models and remain difficult to translate into distinct 
therapeutic strategies. In TTH, available data are scarce and 
inconclusive. One study found no significant differences in 
interictal plasma PACAP levels between patients with TTH and 
healthy controls, suggesting a negligible role for PACAP in this 
condition [40]. In contrast, CH appears to involve PACAP more 
directly. Plasma PACAP levels have been found to be reduced 
during the inter-bout period in episodic CH but elevated during 
active attacks [41]. A double-blind, placebo-controlled cross-
over study demonstrated that 20-minute PACAP infusions 
triggered cluster-like attacks in approximately 50% of patients 
with active episodic or chronic CH, while patients in remission 
were unaffected [42]. These PACAP-provoked attacks occurred 
independently of changes in CGRP, VIP, or mast cell activation 
markers such as histamine and tryptase [43,44], implying a 
distinct and non-redundant mechanism within the pathophys-
iological framework. PACAP may act as a shared, but variably 
expressed and weighted, mediator across primary headache 
types. While its role in TTH appears minimal, its pathophys-
iological and clinical relevance in migraine and CH supports 
further investigation into PACAP-targeted therapies.

Conclusions

Understanding the pathophysiological mechanisms of primary 
headaches remains a critical challenge. While historical theo-
ries emphasized either vascular or neuronal origins, current ev-
idence supports an integrated neurovascular model, in which 
the dynamic interplay between neural and vascular systems 
contributes to the generation and modulation of headache 
pain. This complexity is exemplified by neuropeptides such as 
VIP, CGRP, and PACAP, which exert both vasoactive and neuro-
nal effects [45]. CGRP is a therapeutic target in migraine, yet 
its clinical utility is limited by lack of biomarker reliability and a 
substantial proportion of non-responders. PACAP represents 
a newer target, with preliminary evidence supporting its role 
in both migraine and cluster headache, but not in tension-type 
headache. The incomplete understanding of PACAP’s receptor 
mechanisms highlights the need for further mechanistic and 
translational research. Future research should aim to better 
characterize biologically defined subtypes, identify predictive 
biomarkers, and develop targeted therapies that address the 
specific mechanisms active in individual patients. As the field 
advances, future therapeutic strategies may include dual-tar-
get inhibitors that simultaneously modulate CGRP and PACAP 
pathways, as well as personalized approaches based on bio-
marker profiles or headache phenotypes. While comparative 
efficacy and side effect profiles across existing treatments 
remain insufficiently characterized, ongoing trials and expert 
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consensus initiatives are expected to inform the clinical po-
sitioning of neuropeptide-targeted therapies [45]. Continued 
mechanistic research will be essential to guide rational combi-
nation or sequential therapies in patients who remain refracto-
ry to current options. Integrating insights from neuroimaging, 
molecular biology, and human provocation models will be key 
to advancing precision medicine in the field of headache disor-
ders.
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