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Abstract

Transcranial alternating current stimulation (tACS) is a non-invasive neuromodulation technique that generates weak oscillatory electric fields
(EFs) in the brain and has shown promise for probing neural oscillations and treating neuropsychiatric disorders. However, its effects on neural
activity remain highly variable across studies, and controversies persist regarding whether conventional tACS intensities can genuinely entrain
neuronal firing. Experimental approaches alone have limited capacity to resolve these inconsistencies. Computational modeling provides a
powerful complementary framework to quantify induced EFs, predict cellular responses, and generate mechanistic hypotheses. In this review,
we focus on multiscale models spanning from macroscopic realistic head models to microscopic multi-compartmental neuronal models. Head
models elucidate how anatomy, tissue conductivity, stimulation parameters, and electrode montage shape the spatial distribution of tACS-in-
duced fields, while multi-compartmental models reveal how EFs, neuronal morphology, biophysics, and synaptic inputs govern cell-type-specific
polarization and spike entrainment. We highlight key insights, unresolved controversies, and emerging trends, including the integration of head
and neuronal models, network-level simulations, and the use of artificial intelligence to bridge scales. By critically synthesizing advances in mul-
tiscale modeling, we argue that coupling computational frameworks with experimental recordings is essential for explaining the diversity of tACS
effects and for translating mechanistic insights into individualized, clinically effective interventions.

Keywords: Transcranial alternating current stimulation; computational modeling; induced electric field; multi-compartmental neuronal models;

membrane polarization; spike entrainment.

Introduction

Transcranial alternating current stimulation (tACS) uses scalp
electrodes to apply low-intensity current (typically no more
than 2 mA) at a specific frequency to modulate neural activ-
ity in a noninvasive and tolerable manner [1, 2]. By targeting
endogenous oscillations, tACS provides a unique opportunity
to probe the causal relationship between neural oscillations,
cognition, and behavior [3, 4], and it is increasingly explored
as a therapeutic strategy for neuropsychiatric disorders [5-7].
Despite rapid growth in experimental and clinical applications,
the mechanisms by which tACS shapes neural dynamics re-
main incompletely understood.

At the core of tACS action are oscillatory electric fields (EFs)
generated within the brain [8]. Such field is the acting force for
driving its effects on neural activity [3]. The weak oscillatory
field induced by tACS is not strong enough to activate action
potentials in resting neurons, which is traditionally categorized
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as a subthreshold stimulation. Experimental recordings in
rats [9-13], ferrets [14, 15], nonhuman primates [16-20], and
humans [13] showed that such weak EFs can modulate spike
timing and entrain neural activity. The above interventions are
determined by EF strength and frequency, which also depend
on cell type and ongoing oscillations. Particularly, tACS-in-
duced effects on neural activity are highly variable across
studies, and some findings are not fully reliable and difficult to
replicate. This inconsistency has fueled ongoing debate over
whether conventional tACS intensities, commonly 1-2 mA at
the scalp, can genuinely entrain neural firing in vivo [21-24].

Computational modeling has emerged as a powerful com-
plement to experimental approaches for addressing these
controversies. Models can quantify EF distributions across
tissues, test mechanistic hypotheses at the cellular level, and
guide experimental design and clinical protocols [25-26]. In
particular, realistic head models allow estimation of EF distri-
bution across brain regions based on individual anatomy, while
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multi-compartmental neuronal models capture the morphol-
ogy- and biophysics-dependent responses of single cells to
applied fields. Integrating these scales enables mechanistic
insights into how tACS affects neural activity, from the distri-
bution of currents in the brain to the entrainment of individual
neurons.

Previous studies [2-5, 8, 27-31] summarized the neurophysi-
ological and cognitive effects of tACS and discussed meth-
odological challenges. In contrast, our review focuses specif-
ically on multiscale computational modeling. We first outline
advances in realistic head models that predict EF distributions,
then examine multi-compartmental neuronal models that char-
acterize cellular polarization and spiking entrainment. Finally,
we discuss how integrating these approaches can resolve
current controversies, highlight emerging directions such as
network-level and artificial intelligence-assisted modeling, and
consider the implications for translating tACS into individual-
ized, clinically effective neuromodulation.

Realistic Head Models of tACS

tACS generates oscillating EFs across brain tissues, which are
usually measured in units of voltage per meter (V/m) or milli-
volts per millimeter (mV/mm) [3, 32]. As noted, the fluctuating
EF is the acting force of tACS. Therefore, calculation of EF in
the target region is a first step to mechanistically understand
cellular responses via modeling. Measured EFs can also be
used to facilitate electrode montage selection and individual-
ized dosing [3, 33, 34], and to predict inter-individual variability
in tACS effects [35].

Realistic head models are powerful tools for predicting EF
distribution induced in the brain during tACS [36, 37], which
are often impractical to measure using experimental methods
alone. These head models are created from anatomical mag-
netic resonance imaging (MRI), segmented into different tis-
sue types such as scalp, skull, cerebrospinal fluid, gray matter,
and white matter. The typical workflow includes MRI segmen-
tation, 3D-surface tissue reconstruction, electrode placement,
volume mesh generation, assignment of electrical conductivity
and permittivity, specification of physics settings and bound-
ary conditions, and finite element method (FEM) calculation
[36, 38]. Common toolboxes used for simulating EF in realistic
head models include SimNIBS [39, 40], COMETS2 [41], ROAST
[38], SCIRun [42], and SimBio [43]. These toolboxes use FEM to
numerically calculate EFs. Note that when calculating tACS-in-
duced fields, it is usually assumed that the coupling between
electric and magnetic fields is negligible, i.e., the quasi-static
approximation [44]. This approximation is valid in the frequen-
cy range currently used for tACS [45].

The calculation of EF induced by tACS depends on the elec-
trical conductivity of brain tissues. Since tissue conductivity
varies between individuals, it is necessary to validate the pre-
dictions of a head model with in vivo measurements. Huang et
al [46] directly measured EF in ten epilepsy patients generated
by tACS and calibrated individual head models by adjusting
skull, scalp, and brain conductivities to match recorded EFs.
The resulting individualized models predicted EF spatial dis-
tribution with high accuracy for all subjects. Their validation
results were later confirmed by Opitz et al [47], which con-
sistently showed that realistic brain models using standard
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conductivities slightly misestimate the measured EF strength,
suggesting the need for individual adjustments of tissue con-
ductivities. Further, tissue conductivity exhibits inter-individ-
ual variability, and accounting for this variation is crucial for
gaining better insights into stimulation mechanisms. However,
many tACS modeling studies are based on a single exemplary
head model. To capture anatomical and tissue variabilities,
Berger et al [48] recently created a comprehensive dataset
of 100 quality-assured realistic head models with variable
tissue conductivities based on individual imaging data from
the Human Connectome Project s1200 release. To reflect in-
ter-individual variability, the scalp, skull, and grey matter tissue
conductivities for each model were assigned pseudo-randomly
from biologically plausible distributions [49]. The cerebrospinal
fluid, white matter, and eye tissue conductivities were fixed at
the default setting. To assess the quality of each head mesh,
the authors performed a semi-manual correction for tissue
accuracy and quality measurements of finite-element analysis.
They also provided the simulation results of exemplary tACS
montage based on a desynchronized montage outlined by
Alekseichuk et al [50]. The dataset of their head models can
assist in population variability analysis, meta-modeling tech-
niques, and stimulation target optimization.

Other factors affecting tACS-induced EF distribution include
stimulation current intensity, frequency, phase, electrode
placement, and head anatomy. Recordings in surgical epilepsy
patients [46] showed that the maximum EF exhibits approx-
imately linear dependence on stimulation current intensity,
which is about 0.4-0.5 V/m in human when current intensity
is 1 mA from peak-to-baseline. Recordings in monkeys [32]
showed that there is a small attenuation (up to 10%) in EF in-
tensity as stimulation frequency increases. Alekseichuk et al
[51] combined direct invasive recordings with computational
models to characterize the dependence of EF magnitude and
phase on stimulation phase during multi-electrode tACS. Their
work demonstrated that specific phase configurations can cre-
ate a “traveling wave” stimulation pattern, in which the location
of maximum EF shifts over time. Subsequently, Lee et al [52]
used phasor algebra and detailed head models to develop a
simulation framework for predicting the phase gradient of EFs
during multi-channel tACS. Their simulations precisely predict-
ed in vivo recordings in monkeys when the return electrode
was placed within a small radius (< 5 mm) from its actual
location. They individually calibrated the overestimation in EF
amplitude through optimization of tissue conductivity, which
enhanced the correspondence between simulated and mea-
sured field amplitudes. Using validated head models, Opitz et
al [47] determined the tolerance limits for variation in electrode
placement, recommending that a placement accuracy of with-
in 1 cm is required for reliable tACS application. In a following
comparative modeling study involving mice, monkeys, and
humans [53], the same research group revealed that head size
is another factor influencing EF strength. Moreover, Ma et al
[54] identified skull thickness, scalp thickness, and epidural
cerebrospinal fluid thickness as key anatomical factors that
contribute to the inter-individual variability of EF intensity.



Multi-Compartmental Neuronal Models of
Cellular Responses to tACS

The oscillatory EF generated by tACS with conventional intensi-
ties (i.e., 1-2 mA) can periodically polarize the transmembrane
potential. In vitro recordings in rats showed that such polariza-
tion response almost linearly increases with EF strength and
decreases substantially as field frequency is varied from 10
Hz to 100 Hz [10]. The mean sensitivity of membrane poten-
tial to applied field exhibits an exponential decay function of
frequency. However, other in vitro experiments in rats [9, 13]
and humans [13] reported there is no frequency dependence in
membrane polarization by weak EFs. Additionally, consistent
evidence from in vitro studies in rats [9, 10, 12, 13], ferrets [14],
and humans [13], as well as in vivo recordings in rats [11], fer-
rets [14, 15] and nonhuman primates [16-20] showed that the
weak EF can alter neural spike timing and cause entrainment.
Yet, the degree of entrainment is highly variable within and
across cell types. Some in vivo experiments in humans [23, 24]
even revealed that the current intensities commonly used may
not be sufficient to genuinely entrain neural activity. These con-
tradictory findings underscore the necessity of using computa-
tional models to quantify and understand the variable effects
of tACS on cellular activity.

Multi-Compartmental Neuronal Models

The neural response to tACS is not only determined by the
induced EF but also depends on cell properties, including bio-
physics, morphology, orientation, and ongoing brain activity.
Using EF distribution alone is not sufficient to predict all cellu-
lar effects of tACS, which should be coupled to single-neuron
models. Multi-compartmental models are powerful tools for
predicting cellular responses to spatially distributed EF. This
type of model discretizes the complex cell morphology into
small compartments. Each compartment includes its spe-
cific membrane capacitance, resistance, ionic channel, and
morphological features (i.e., length and diameter). Adjacent
compartments are connected by an intracellular (axial) resis-
tance. The membrane potential gradient along the neurites
generates axial currents flowing between compartments. The
branch points in the dendrites or axon connect to at least three
neighboring compartments. The conductance-based models
introduced by Hodgkin and Huxley [55] provide powerful tools
for describing the relationship between electrical activity and
underlying ionic currents in each compartment. According to
Hodgkin-Huxley (HH) formalism, an ionic current is calculated
as the product of its conductance and driving force. See refer-
ence [56] for a more comprehensive description of such mod-
els.

The multi-compartmental conductance-based neuronal mod-
els with realistic morphologies have been developed and
validated for a wide range of cell types across animal species
and humans, which are publicly available through repositories
such as ModelDB, GitHub, and the library of Blue Brain models.
A common software for simulating compartmental models
is the NEURON environment [57], which offers a user-friendly
graphical interface. It also allows users to develop custom
models, execute simulations, and optimize parameters using
Python, MATLAB or its specific programming language based
on hoc.

https://doi.org/10.71321/wyq6hf65

tACS is modeled by applying the induced EF to each cell
compartment as its extracellular voltage using NEURON's
extracellular mechanism [58-60]. The spatial morphologies
of multi-compartmental models allow them to effectively de-
scribe the biophysical effects of EF on cell membrane. Since
large current sources generated by the electrode placed at the
scalp are distant from underlying cells, the induced EF has a
low spatial gradient at the scale of individual neurons [61, 62].
Thus, when introducing the EF generated by a scalp electrode
to a neuronal model, the field is often assumed to be uniform,
i.e., the quasi-uniform assumption [59, 61-63].

According to the HH framework, transmembrane potential
dynamics emerge from the interactions of intrinsic membrane
properties, which include passive capacitance-resistance
and voltage-gated ionic conductances [56]. These properties
collectively govern cellular filtering behaviors over a range of
stimulation frequencies. When an oscillatory EF is applied, it
modulates transmembrane voltage by altering the extracel-
lular potential in each neuronal compartment. Such periodic
perturbations interact with the membrane time constant and
ion channel kinetics, thereby conferring an inherent frequency
dependence on cellular response to oscillatory EFs.

Modeling Studies on Membrane Polarization

Membrane polarization is the subthreshold response of rest-
ing neurons to weak EFs, which significantly depends on cell
morphology and stimulation frequency. Multi-compartmental
HH-type models have been used to simulate tACS-induced
membrane polarization (summarized in Table 1). Under the
quasi-uniform assumption, these studies directly apply weak
sinusoidal EFs to isolated neuronal models without synaptic
input or other external stimuli.

Computational studies have examined the frequency-depen-
dent polarization response in subcellular elements of neocorti-
cal layer 5 pyramidal cells (L5 PCs), including dendrites, soma,
and axon. Toloza et al [59] applied weak sinusoidal EFs to a
multi-compartmental PC model, and field intensity is limited
to 5 mV/mm peak-to-peak to make sure cellular response is
subthreshold. They found that the membrane polarization in
the apical dendrites is opposite to the soma and basal den-
drites. When the apical region is depolarized, the basal region
is hyperpolarized, and vice versa. Membrane polarization
depends on field orientation relative to the cell, and the max-
imal polarization occurs when the EF is parallel to the soma-
to-dendritic axis. These simulations are consistent with earlier
modeling [64] and in vitro [65] results. Membrane response is
also shaped by EF frequency. The polarization in the apical tuft
exhibits a frequency resonance at 20 + 4 Hz, corresponding to
a band-pass behavior. The polarization in other cell compart-
ments decreases monotonically with increasing stimulation
frequency, exhibiting a low-pass filter behavior. The hyper-
polarization-activated cation current (I,) is the primary ionic
mechanism that leads to the resonance response in distal
dendrites, and its conductance density controls the resonance
frequency. Subsequently, Aspart et al [66] used multi-compart-
mental models to quantify the frequency-dependent polariza-
tion profile in the dendrites and soma of a L5b PC to AC fields
of sinusoidal waveform. They calculated cell sensitivity to AC
fields by the ratio of polarization amplitude to field amplitude.
In their simulations, the field sensitivity in apical dendrites
exhibits a frequency resonance around 10-20 Hz, which is not
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observed in the soma or basal dendrites. They related these
differential frequency-dependent polarization profiles to cell
morphology and active channels. The former increases field
sensitivity in the apical dendrites, while the presence of high
density of h-type channels decreases field sensitivity at low
field frequencies. We recently used two-compartment models
to analyze the membrane polarization induced by oscillating
EFs in the frequency domain [67]. We applied linear system
analysis to compute the transfer functions of the models,
which were then used to understand the frequency-dependent
patterns of membrane polarization. We showed that the pres-
ence of |, introduces a new zero and pole to dendritic transfer
function, reducing polarization amplitude at low frequencies
and causing a visible frequency resonance. We also found that
the compartment geometry, internal coupling conductance,
and other ionic currents affect the polarization response main-
ly by altering the gain and poles of transfer functions.

Membrane polarization has also been quantified in different
types of cells. Tran et al [60] examined somatic polarization in
L1 neurogliaform cell (NGC), L2/3 PC, L4 large basket cell
(LBC), L5 PC, and L6 PC using multi-compartmental models
with oscillatory EFs. They applied polarization length to quanti-
fy cell sensitivity to applied EF, which was computed by somat-
ic polarization per unit field. They showed that there is a linear
relationship between somatic polarization and EF strength,
and the mean coefficient of determination R* is 0.9818 over
the set of all neurons. L5 PC exhibits the highest polarization
lengths, followed by L6 PC and L2/3 PC. L1 NGC and L4 LBC
have lower values than PCs. Recently, we used a set of
multi-compartmental models to examine the polarization re-
sponse in the subcellular elements of above five cell types to
sinusoidal EFs [68]. For each cell type, we included five virtual
clones with random variations in their dendritic and axonal
morphologies, which were previously validated to replicate cel-
lular responses to weak fields [61]. Our simulations showed
that membrane polarization varies by cell type and subcellular
element. The somatic polarization in PCs is sensitive to sinu-
soidal EF that is oriented roughly parallel to the cortical col-
umn, while the polarization sensitivity to field direction for

non-pyramidal cells varies between clones. Axon usually exhib-
its the highest polarization, followed by the dendrites and
soma. For PCs, the polarization in the apical dendrites exhibits
a visible frequency resonance, while the other subcellular ele-
ments primarily exhibit low-pass behavior. These findings are
consistent with above mentioned studies [59, 66, 67]. The sub-
cellular elements of non-pyramidal cells exhibit complex fre-
quency-dependent polarization profiles. Similarly, Gaugain et al
[69] found that somatic polarization in PCs is the highest at di-
rect current and decreases exponentially with AC frequency,
which corresponds to a low-pass filter behavior. The polariza-
tion in inhibitory neurons exhibits a resonance in the 5-15 Hz
range. L5 PCs have the highest polarization lengths, and so-
matostatin and parvalbumin cells have lower values.

Modeling Studies on Entrainment of Spiking Activity

The subthreshold membrane polarization by tACS can alter
spike timing and entrain neural activity. The multi-compart-
mental HH-type models have also been used to examine these
effects on ongoing firing activity (summarized in Table 2). In
this scenario, the synaptic inputs are applied to multi-com-
partmental models to generate spontaneous firing. The neural
entrainment is commonly quantified by phase locking value
(PLV), which measures spike timing synchronization relative to
tACS waveform [60, 69]. The minimum PLV is 0, which means
the spike timings are uniformly distributed over all phases. The
maximum value is 1, which means the spike timing is perfectly
synchronized to a specific phase of tACS.

Computational studies have investigated spike entrainment by
tACS in different types of cortical cells. In these studies, tACS
was modeled by directly applying a spatially uniform EF with
sinusoidal waveform to an isolated multi-compartmental mod-
el. Using this method, Tran et al [60] systematically examined
the effects of tACS on firing activity in LT NGC, L2/3 PC, L4
LBC, L5 PC, and L6 PC. To generate spontaneous firing activity,
an excitatory synaptic input was added to each cell at a ran-
dom location on the apical dendrite for PCs or the basal den-
drite for interneurons. A stochastic Poisson process was used
to model the presynaptic input. The synaptic conductance

Table 1. Summary of Multi-compartmental Modeling Studies on Membrane Polarization.

Reference Cortical Cell Type

Main Results

Toloza et al [59] L5 PC
Aspart et al [66] L5 PC drites.
Huang et al [67] PC

L1 NGC, L2/3 PC, L4 LBC, L5

Tran et al [60] PC. L6 PC

L1 NGC, L2/3 PC, L4 LBC, L5

Huang et al [68] PC. L6 PC

soma.
L2/3 PC, L5 PC, L6 PC, VIP in-

terneurons, SST interneurons,
PV interneurons

Gaugain et al [69]

I, is the primary ionic mechanism that leads to the resonance response
to tACS in the apical dendrites.

Cell morphology and I, contribute to the resonance in the apical den-

Passive membrane properties and |, underlie frequency-dependent po-
larization by altering the model’s transfer function.

L5 PC exhibits the highest polarization lengths, followed by L6 PC and
L2/3 PC. L1 NGC and L4 LBC have lower values than PCs.

Membrane polarization varies by cell type and subcellular element. Axon
usually exhibits the highest polarization, followed by the dendrites and

Somatic polarization in PCs decreases with frequency, which exhibits
a resonance in inhibitory neurons. L5 PCs have the highest polarization
lengths, and SST and PV cells have lower values.
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was modeled using a two-exponential function. They found
that sine-wave EF does not alter the firing rate of cortical cells
when field intensity is in the range of human experiments (i.e.,
< 1 V/m). However, such weak fields can entrain the spiking
activity in L5 PC and L4 LBC. L2/3 and L6 PCs exhibit weaker
entrainment than L5 PC and L4 LBC, and no entrainment is ob-
served in LT NGC. The cell-type-specific entrainment is related
to neuronal morphology and cell biophysics. Recently, Gaugain
et al [69] found that the phase entrainment of cortical cells is
dependent on EF intensity and frequency. In their simulations,
the presynaptic spike train was also generated by a stochastic
Poisson distribution. The multiple synapses and their param-
eters were determined to generate reproducible firing activity
with a mean rate at 10 Hz in each cell. They showed that there
is a linear increase in entrainment to tACS frequency with EF
intensity. When EF intensity is 10 V/m, L5 PCs exhibit the high-
est entrainment at their intrinsic firing frequency, which decays
with stimulus frequency. The entrainment in inhibitory neurons
increases with frequency. They also developed three-compart-
ment PC model and single-compartment inhibitory neuron
model to replicate above simulations. These simplified models
can be used for faster computation of network-level dynamics
with tACS.

To mechanistically understand the morphology-dependent
effects of tACS, several studies [70, 71] employed inte-
grate-and-fire (IF) models to approximate neural activity gener-
ated in a biophysically more sophisticated ball-and-stick (BS)
model. The BS model consists of a lumped somatic compart-
ment attached to a passive dendritic cable with a specified
length. The IF model provides a simple phenomenological
description of spike generation while retaining biologically
plausibility of HH-type dynamics [72]. In IF models, a spike is
generated when membrane potential exceeds a predefined
threshold. Aspart et al [70] developed extended IF models to
reflect the morphology-dependent EF effects extracted from
a BS model. The in vivo like noisy synaptic inputs were used
to generate spontaneous spiking, which were modeled as
Ornstein-Uhlenbeck processes. They found that an oscillatory
EF causes spike rate resonance and the resonance frequency
depends on synaptic input location, which is related to the
dendritic filter of synaptic inputs. With the similar technique,
Ladenbauer and Obermayer [71] analytically determined the
parameters of a two-compartment model to reproduce so-
matic voltage dynamics in a BS model. The IF formalism was
used to model the spike dynamics in each compartment. They
found that the oscillatory EF (1 V/m) causes a clear resonance
in spike rate when its frequency is in the beta and low gamma
bands. They further showed that the weak field effectively re-
flects anti-correlated inputs at the soma and dendrite, which
modulate firing activity and lead to spike rate resonance. Using
the two-compartment models described above, we recently in-
vestigated the effects of oscillatory EFs on spike train correla-
tions between pairs of unconnected neurons driven by shared
fluctuating dendritic inputs [73]. We observed that output cor-
relation increases with EF intensity while exhibits resonance at
specific field frequencies. This correlation resonance is influ-
enced by the morphological differences between the somatic
and dendritic compartments, with increased structural asym-
metry resulting in more pronounced resonant behavior. These
findings were further validated using morphologically detailed
PC models.

https://doi.org/10.71321/wyq6hf65

An isolated multi-compartmental model cannot account for all
cellular effects of tACS, and it is necessary to examine cellular
responses to stimulation in a neuronal network with synaptic
connections. Multi-compartmental models incorporate numer-
ous variables, parameters, and nonlinearities. Incorporating
these models into networks with synaptic connections to
simulate cellular responses thus significantly increases com-
putational cost. For this reason, simpler neuronal models are
often appropriate for network-scale simulations of tACS. The
relevant HH-type model usually includes two compartments,
which is the minimal individual neuronal unit to capture the
spatial polarization by EFs [71, 73, 74]. One compartment
represents the apical dendrite, and the other compartment is
the soma. Particularly, they are still computationally efficient
when simulating network dynamics. The method for coupling
EF to a two-compartment model is the same as that used in
multi-compartmental models. With the network of two-com-
partmental models, Zhao et al [75] found that low intensity
tACS (< 0.3 V/m) desynchronizes neural firing relative to ongo-
ing endogenous oscillations, while higher intensity stimulation
(> 0.3 V/m) directly entrains neural firing. These are consistent
with experimental recordings in the nonhuman primate brain
[20]. Compared to isolated single cells, tACS-induced entrain-
ment is amplified by synaptic coupling and network effects.
Their simulations also revealed that oscillatory EFs directly
entrain pyramidal cell and then drive the interneurons. Note
that the two-compartment models do not include realistic cell
morphology, which is an important factor that may lead to
variability in single neuron responses to tACS [60, 66, 70]. Im-
portantly, such simplified models are unable to simulate mem-
brane polarization in dendritic and axonal terminals as well as
their arbors, and thus neglect tACS effects on presynaptic and
postsynaptic compartments [61]. All these factors can affect
their predictions on input-output properties in single neurons
and further alter network-level activity. Simulation of tACS
effects on large-scale networks with morphologically detailed
neuronal models can be executed on the supercomputers [61,
76]. Further, there were studies using networks of phenomeno-
logical models (such as, Izhikevich or IF models) to simulate
the entrainment of cortical oscillations by tACS, which were
reviewed in reference [27] and not covered here.

Above studies use a uniform EF to describe tACS, which do
not consider the anatomical distribution of EFs. Wischnews-
ki et al [19] integrated multi-compartmental models of L5
thick-tufted PCs with a realistic head model to simulate tACS
effects on spiking activities. Alternating currents were applied
to the scalp anterior and posterior of motor cortex through two
electrodes. The head model predicts that the EF is strongest
at crown of the precentral gyrus, which is 0.31 mV/mm and
decreases with depth into the sulcus. Such EF significantly
entrains L5 PCs without altering firing rates. The neural en-
trainment by tACS depends on the orientation of cortical cells.
Since the locations of PCs in anterior and posterior wall of
the precentral gyrus are along electric current direction, they
are more entrained than those at the crown and the bottom
of the sulcus. Further, the anterior wall and posterior wall are
entrained at different phases. Wischnewski et al [19] also de-
veloped a simplified microcircuit model with two PCs and one
interneuron, and each neuron was described by a two-compart-
ment model consisting of a soma and a dendrite. Combined
with the realistic head model, they replicated the phase shifts

47



Brain Conflux

over time observed in experimental recordings, suggesting
that N-methyl-D-aspartate (NMDA)-mediated synaptic plastici-
ty is a factor that drives above phase precession. We recently
used multiscale modeling to examine how L5 PCs in primary
motor cortex respond to conventional M1-SO tACS [77]. The
simulations of an anatomically accurate head model showed
that the induced EFs distribute heterogeneously across the L5
surface of interest. By calculating PLV and preferred phase of

morphologically realistic neuronal models, we found that the
direction and intensity of heterogeneous EF and cell morphol-
ogy are factors that contribute to the diverse entrainments.
Our simulations also validated the quasi-uniform assumption
used for modeling tACS effects on spike entrainment. The
synaptic inputs in above two studies are modeled using a
similar approach to Tran et al [60]. Note that such multiscale
models were also applied to quantify the axonal and dendritic

Table 2. Summary of Multi-compartmental Modeling Studies on Entrainment of Spiking Activity.

Reference Neuronal Model tACS Model

Main Results

Tran et al [60]

Gaugain et al [69]

Aspart et al [70]

Ladenbauer and
Obermayer [71]

Huang et al [73]

Zhao et al [75]

Wischnewski et al
[19]

Wischnewski et al
[19]

Huang et al [77]

isolated multi-compart-
mental model with realistic
morphology

isolated multi-compart-
mental model with realistic
morphology

extended IF model devel-
oped based on a BS model

two-compartment IF model
developed based on a BS
model

two-compartment IF model
developed based on a BS
model

cortical network consisting
of 800 PCs and 200 inter-
neurons, and each neuron
is described by a two-com-
partment HH-type model

isolated multi-compart-
mental model with realistic
morphology

a microcircuit with two PCs
and one interneuron, and
each neuron is described
by a two-compartment HH-
type model

isolated multi-compart-
mental model with realistic
morphology

uniformly distributed
sinusoidal EF

uniformly distributed
sinusoidal EF

uniformly distributed
sinusoidal EF

uniformly distributed
sinusoidal EF

uniformly distributed
sinusoidal EF

uniformly distributed
sinusoidal EF

EFs calculated in a
realistic head model

EFs calculated in a
realistic head model

EFs calculated in a
realistic head model

Weak fields (< 1 V/m) entrain spiking activity in L5 PC
and L4 LBC. L2/3 and L6 PCs exhibit weaker entrain-
ment than L5 PC and L4 LBC, and no entrainment is
observed in L1 NGC. Cell-type-specific entrainment is
related to neuronal morphology and biophysics.
Phase entrainment depends on EF intensity and fre-
quency. L5 PCs exhibit the highest entrainment at 10
Hz when field intensity is 10 V/m, which decays with
stimulus frequency. The entrainment in inhibitory cells
increases with frequency.

An oscillatory EF causes spike rate resonance and the
resonance frequency depends on synaptic input loca-
tion, which is related to the dendritic filter for synaptic
inputs.

An oscillatory EF (1 V/m) effectively reflects anti-cor-
related inputs at the soma and dendrite, which modu-
late firing activity and lead to spike rate resonance.
Spike train correlation increases with EF intensity
while exhibits resonance at specific field frequen-
cies. This correlation resonance is influenced by the
morphological differences between the somatic and
dendritic compartments.

Low intensity EF (< 0.3 V/m) desynchronizes neural
firing relative to ongoing endogenous oscillations,
while higher intensity field (> 0.3 V/m) directly entrains
neural firing. tACS-induced entrainment is amplified by
synaptic coupling and network effects. The oscillatory
EFs directly entrain PCs and then drive the interneu-
rons.

EF entrains L5 PCs without altering firing rates, which
depends on the orientation of cortical cells. The PCs
in anterior and posterior wall of the precentral gyrus
are more entrained than those at the crown and the
bottom of the sulcus.

NMDA-mediated synaptic plasticity is a factor that
drives the phase shifts over time observed in experi-
mental recordings.

EF heterogeneity and cell morphology are factors that
contribute to diverse entrainments. The quasi-uniform
assumption used for modeling tACS effects on spike
entrainment is validated.
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polarization by transcranial direct current stimulation [61] and
cortical neuron activation by transcranial magnetic stimulation
[78]. These studies collectively indicate that the multiscale
modeling is a promising approach for understanding cellular
response to noninvasive brain stimulation.

Conclusions

tACS offers a noninvasive means to probe and modulate neu-
ral oscillations, yet fundamental questions remain about its
ability to entrain neuronal activity at conventionally applied
intensities. Multiscale computational models provide a critical
framework for resolving these controversies by linking mac-
roscopic EF distributions to cell-type-specific polarization and
spike entrainment. Realistic head models have clarified how
anatomy, tissue conductivity, stimulation parameters, and elec-
trode montage shape field strength, while multi-compartmen-
tal neuronal models have demonstrated how cell morphology,
ionic currents, and synaptic inputs govern cellular responsive-
ness.

Data-driven methods have been applied to develop multi-
scale models to reproduce and integrate experimental data.
Markram et al [76] used a multi-objective optimization to con-
strain the vector of ion channel conductance densities in neo-
cortical microcircuitry to reproduce recorded spike features.
Dura-Bernal et al [79] applied a hyperparameter optimization
framework to tune synaptic weights in auditory thalamocorti-
cal circuits to produce physiological firing rates. The resulting
data-driven multiscale models were used to interpret the cel-
lular and circuit mechanisms underlying experimental obser-
vations. Therefore, the data-driven integration of multiscale
models with experimental recordings across species and
human neuroimaging will be essential for identifying cell- and
region-specific mechanisms of tACS, reconciling translational
differences, and capturing excitatory-inhibitory network inter-
actions.

Further, the convolutional neural networks were previously
used to rapidly predict EF distribution in brain tissues [80-
81] and activation threshold in cortical cells [82] during tran-
scranial magnetic stimulation. The temporal convolutional
networks were applied to predict the subthreshold dynamics
and spike timing in L5 PCs with synaptic inputs [83]. The hi-
erarchical convolutional neural networks were used to model
neural single-unit and population responses in higher visual
cortical areas [84]. These studies suggest that artificial neu-
ral networks could be introduced to assist in multiscale tACS
modeling and bridge the data at different scales. By advancing
toward individualized, validated, and clinically informed model-
ing frameworks, potentially enhanced by artificial intelligence
technologies, future work can transform tACS from a variable
experimental tool into a precise neuromodulation strategy with
robust therapeutic applications.

Abbreviations

VIP: vasoactive intestinal peptide; SST: somatostatin; PV: parv-
albumin.

https://doi.org/10.71321/wyq6hf65

Author Contributions

GSY contributed to conceptualization, literature review, super-
vision, manuscript writing, and revision. XBH and XLH con-
tributed to literature review, manuscript writing, and revision.
FZ and JTC contributed to literature review and revision. SL
contributed to conceptualization, literature review, manuscript
writing, and revision.

Acknowledgements

Not applicable.

Ethics Approval and Consent to Participate

Not applicable.

Funding information

This work was sponsored by National Natural Science Founda-
tion of China (82371512), Natural Science Foundation of Tian-
jin (24JCYBJC01000), Tianjin Health Research Project (TJW-
J2024MS037) and Tianjin Key Medical Discipline Construction
Project (TJYXZDXK-3-015B). All funding had no role in study
design, data analysis, paper submission and publication.

Competing Interests

The authors declare that they have no existing or potential
commercial or financial relationships that could create a con-
flict of interest at the time of conducting this study.

Data Availability

All data needed to evaluate the conclusions in the paper are
present in the paper or the Supplementary Materials. Addi-
tional data related to this paper may be requested from the
authors.

References

[1] Antal A, Paulus W. (2013). Transcranial alternating current
stimulation (tACS). Front Hum Neurosci, 7, 317. http://doi.
org/10.3389/fnhum.2013.00317

[2] Van Hoornweder S, Stagg CJ, Wischnewski M. (2025).
Personalizing transcranial electrical stimulation. Trends
Neurosci, 48(9), 663-678. https://doi.org/10.1016/
j-tins.2025.07.007

[3] Wischnewski M, Alekseichuk I, Opitz A. (2023). Neuro-
cognitive, physiological, and biophysical effects of tran-
scranial alternating current stimulation. Trends Cogn Sci,
27(2),189-205. https://doi.org/10.1016/j.tics.2022.11.013

[4] Riddle J, Frohlich F. (2021). Targeting neural oscillations

49


http://doi.org/10.3389/fnhum.2013.00317
http://doi.org/10.3389/fnhum.2013.00317
http://doi.org/10.3389/fnhum.2013.00317
https://doi.org/10.1016/j.tins.2025.07.007
https://doi.org/10.1016/j.tins.2025.07.007
https://doi.org/10.1016/j.tins.2025.07.007
https://doi.org/10.1016/j.tins.2025.07.007
https://doi.org/10.1016/j.tics.2022.11.013
https://doi.org/10.1016/j.tics.2022.11.013
https://doi.org/10.1016/j.tics.2022.11.013
https://doi.org/10.1016/j.tics.2022.11.013
https://doi.org/10.1016/j.brainres.2021.147491

Brain Conflux

with transcranial alternating current stimulation. Brain
Res, 1765, 147491. https://doi.org/10.1016/j.brain-
res.2021.147491

[5] Agboada D, Zhao Z, Wischnewski M. (2025). Neuroplas-
tic effects of transcranial alternating current stimulation
(tACS): from mechanisms to clinical trials. Front Hum
Neurosci, 19, 1548478. https://doi.org/10.3389/fn-
hum.2025.1548478

[6] Gholamali Nezhad F, Martin J, Tassone VK, Swiderski A,
Demchenko |, Khan S, et al. (2024). Transcranial alternat-
ing current stimulation for neuropsychiatric disorders: a
systematic review of treatment parameters and outcomes.
Front Psychiatry, 15, 1419243. https://doi.org/10.3389/
fpsyt.2024.1419243

[7]1 BiaCkova N, Adamova A, Klirova M. (2024). Transcrani-
al alternating current stimulation in affecting cognitive
impairment in psychiatric disorders: a review. Eur Arch
Psychiatry Clin Neurosci, 274(4), 803-826. https://doi.
org/10.1007/s00406-023-01687-7

[8] Liu A, Voréslakos M, Kronberg G, Henin S, Krause MR,
Huang Y, et al. (2018). Immediate neurophysiological ef-
fects of transcranial electrical stimulation. Nat Commun,
9(1), 5092. https://doi.org/10.1038/s41467-018-07233-7

[9] Anastassiou CA, Perin R, Markram H, Koch C. (2011). Ep-
haptic coupling of cortical neurons. Nat Neurosci, 14(2),
217-23. https://doi.org/10.1038/nn.2727

[10] Deans JK, Powell AD, Jefferys JG. (2007). Sensitivi-
ty of coherent oscillations in rat hippocampus to AC
electric fields. J Physiol, 583(Pt 2), 555-65. https://doi.
org/10.1113/jphysiol.2007.137711

[11] Ozen S, Sirota A, Belluscio MA, Anastassiou CA, Stark E,
Koch C, et al. (2010). Transcranial electric stimulation
entrains cortical neuronal populations in rats. J Neurosci,
30(34), 11476-85. https://doi.org/10.1523/JNEUROS-
Cl1.5252-09.2010

[12] Francis JT, Gluckman BJ, Schiff SJ. (2003). Sensi-
tivity of neurons to weak electric fields. J Neurosci,
23(19), 7255-61. https://doi.org/10.1523/JNEUROS-
Cl1.23-19-07255.2003

[13] Lee SY, Kozalakis K, Baftizadeh F, Campagnola L, Jarsky T,
Koch C, et al. (2024). Cell-class-specific electric field en-
trainment of neural activity. Neuron, 112(15), 2614-2630.
e5. https://doi.org/10.1016/j.neuron.2024.05.009

[14] Frohlich F, McCormick DA. (2010). Endogenous elec-
tric fields may guide neocortical network activity.
Neuron, 67(1), 129-43. https://doi.org/10.1016/j.neu-
ron.2010.06.005

[15] Huang WA, Stitt IM, Negahbani E, Passey DJ, Ahn S, Davey
M, et al. (2021). Transcranial alternating current stimu-
lation entrains alpha oscillations by preferential phase
synchronization of fast-spiking cortical neurons to stim-
ulation waveform. Nat Commun, 12(1), 3151. https://doi.
org/10.1038/s41467-021-23021-2

[16] Krause MR, Vieira PG, Csorba BA, Pilly PK, Pack CC. (2019).
Transcranial alternating current stimulation entrains sin-
gle-neuron activity in the primate brain. Proc Natl Acad
Sci U S A, 116(12), 5747-5755. https://doi.org/10.1073/
pnas.1815958116

[17] Vieira PG, Krause MR, Pack CC. (2020). tACS entrains neu-
ral activity while somatosensory input is blocked. PLoS Bi-
ology, 18(10), e3000834. https://doi.org/10.1371/journal.

50

pbio.3000834

[18] Johnson L, Alekseichuk I, Krieg J, Doyle A, Yu Y, Vitek
J, et al. (2020). Dose-dependent effects of transcranial
alternating current stimulation on spike timing in awake
nonhuman primates. Sci Adv, 6(36), eaaz2747. https://doi.
org/10.1126/sciadv.aaz2747

[19] Wischnewski M, Tran H, Zhao Z, Shirinpour S, Haigh ZJ,
Rotteveel J, et al. (2024). Induced neural phase precession
through exogenous electric fields. Nat Commun, 15(1),
1687. https://doi.org/10.1038/s41467-024-45898-5

[20] Krause MR, Vieira PG, Thivierge JP, Pack CC. (2022). Brain
stimulation competes with ongoing oscillations for con-
trol of spike timing in the primate brain. PLoS Biol, 20(5),
€3001650. https://doi.org/10.1371/journal.pbio.3001650

[21] Beliaeva V, Polania R. (2020). Can low-intensity tACS gen-
uinely entrain neural activity in vivo? Brain Stimul, 13(6),
1796-1799. https://doi.org/10.1016/j.brs.2020.10.002

[22] Khatoun A, Asamoah B, Mc Laughlin M. (2019). How does
transcranial alternating current stimulation entrain sin-
gle-neuron activity in the primate brain? Proc Natl Acad
Sci U S A, 116(45), 22438-22439. https://doi.org/10.1073/
pnas.1912927116

[23] Voroslakos M, Takeuchi Y, Brinyiczki K, Zombori T, Oliva
A, Fernandez-Ruiz A, et al. (2018). Direct effects of tran-
scranial electric stimulation on brain circuits in rats and
humans. Nat Commun, 9(1), 483. https://doi.org/10.1038/
s41467-018-02928-3

[24] Lafon B, Henin S, Huang Y, Friedman D, Melloni L, Thesen T,
et al. (2017). Low frequency transcranial electrical stimu-
lation does not entrain sleep rhythms measured by human
intracranial recordings. Nat Commun, 8(1), 1199. https://
doi.org/10.1038/s41467-017-01045-x

[25] Zuidema W, French RM, Alhama RG, Ellis K, O'Donnell TJ,
Sainburg T, et al. (2020). Five ways in which computation-
al modeling can help advance cognitive science: lessons
from artificial grammar learning. Top Cogn Sci, 12(3), 925-
941. https://doi.org/10.1111/tops.12474

[26] Aberra AS, Peterchev AV, Grill WM. (2018). Biophysi-
cally realistic neuron models for simulation of cortical
stimulation. J Neural Eng, 15(6), 066023. https://doi.
org/10.1088/1741-2552/aadbb1

[27] Madadi Asl M, Valizadeh A. (2025). Entrainment by tran-
scranial alternating current stimulation: Insights from
models of cortical oscillations and dynamical systems the-
ory. Phys Life Rev, 53, 147-176. https://doi.org/10.1016/
j.plrev.2025.03.008

[28] Bland NS, Sale MV. (2019). Current challenges: the ups
and downs of tACS. Exp Brain Res, 237(12), 3071-3088.
https://doi.org/10.1007/s00221-019-05666-0

[29] Beliaeva V, Savvateev |, Zerbi V, Polania R. (2021). Toward
integrative approaches to study the causal role of neural
oscillations via transcranial electrical stimulation. Nat
Commun, 12(1), 2243. https://doi.org/10.1038/s41467-
021-22468-7

[30] Sasaki R. (2025). Modulating cortico-cortical networks
with transcranial alternating current stimulation: a minirev-
iew. Phys Ther Res, 28(1), 1-8. https://doi.org/10.1298/pir.
R0O035

[31]He Y, Liu S, Chen L, Ke Y, Ming D. (2023). Neurophysio-
logical mechanisms of transcranial alternating current
stimulation. Front Neurosci, 17, 1091925. https://doi.


https://doi.org/10.1016/j.brainres.2021.147491
https://doi.org/10.1016/j.brainres.2021.147491
https://doi.org/10.1016/j.brainres.2021.147491
https://doi.org/10.3389/fnhum.2025.1548478
https://doi.org/10.3389/fnhum.2025.1548478
https://doi.org/10.3389/fnhum.2025.1548478
https://doi.org/10.3389/fnhum.2025.1548478
https://doi.org/10.3389/fnhum.2025.1548478
https://doi.org/10.3389/fpsyt.2024.1419243
https://doi.org/10.3389/fpsyt.2024.1419243
https://doi.org/10.3389/fpsyt.2024.1419243
https://doi.org/10.3389/fpsyt.2024.1419243
https://doi.org/10.3389/fpsyt.2024.1419243
https://doi.org/10.3389/fpsyt.2024.1419243
https://doi.org/10.1007/s00406-023-01687-7
https://doi.org/10.1007/s00406-023-01687-7
https://doi.org/10.1007/s00406-023-01687-7
https://doi.org/10.1007/s00406-023-01687-7
https://doi.org/10.1007/s00406-023-01687-7
https://doi.org/10.1038/s41467-018-07233-7
https://doi.org/10.1038/s41467-018-07233-7
https://doi.org/10.1038/s41467-018-07233-7
https://doi.org/10.1038/s41467-018-07233-7
https://doi.org/10.1038/nn.2727
https://doi.org/10.1038/nn.2727
https://doi.org/10.1038/nn.2727
https://doi.org/10.1113/jphysiol.2007.137711
https://doi.org/10.1113/jphysiol.2007.137711
https://doi.org/10.1113/jphysiol.2007.137711
https://doi.org/10.1113/jphysiol.2007.137711
https://doi.org/10.1523/JNEUROSCI.5252-09.2010
https://doi.org/10.1523/JNEUROSCI.5252-09.2010
https://doi.org/10.1523/JNEUROSCI.5252-09.2010
https://doi.org/10.1523/JNEUROSCI.5252-09.2010
https://doi.org/10.1523/JNEUROSCI.5252-09.2010
https://doi.org/10.1523/JNEUROSCI.23-19-07255.2003
https://doi.org/10.1523/JNEUROSCI.23-19-07255.2003
https://doi.org/10.1523/JNEUROSCI.23-19-07255.2003
https://doi.org/10.1523/JNEUROSCI.23-19-07255.2003
https://doi.org/10.1016/j.neuron.2024.05.009
https://doi.org/10.1016/j.neuron.2024.05.009
https://doi.org/10.1016/j.neuron.2024.05.009
https://doi.org/10.1016/j.neuron.2024.05.009
https://doi.org/10.1016/j.neuron.2010.06.005
https://doi.org/10.1016/j.neuron.2010.06.005
https://doi.org/10.1016/j.neuron.2010.06.005
https://doi.org/10.1016/j.neuron.2010.06.005
https://doi.org/10.1038/s41467-021-23021-2
https://doi.org/10.1038/s41467-021-23021-2
https://doi.org/10.1038/s41467-021-23021-2
https://doi.org/10.1038/s41467-021-23021-2
https://doi.org/10.1038/s41467-021-23021-2
https://doi.org/10.1038/s41467-021-23021-2
https://doi.org/10.1073/pnas.1815958116
https://doi.org/10.1073/pnas.1815958116
https://doi.org/10.1073/pnas.1815958116
https://doi.org/10.1073/pnas.1815958116
https://doi.org/10.1073/pnas.1815958116
https://doi.org/10.1371/journal.pbio.3000834
https://doi.org/10.1371/journal.pbio.3000834
https://doi.org/10.1371/journal.pbio.3000834
https://doi.org/10.1371/journal.pbio.3000834
https://doi.org/10.1126/sciadv.aaz2747
https://doi.org/10.1126/sciadv.aaz2747
https://doi.org/10.1126/sciadv.aaz2747
https://doi.org/10.1126/sciadv.aaz2747
https://doi.org/10.1126/sciadv.aaz2747
https://doi.org/10.1038/s41467-024-45898-5
https://doi.org/10.1038/s41467-024-45898-5
https://doi.org/10.1038/s41467-024-45898-5
https://doi.org/10.1038/s41467-024-45898-5
https://doi.org/10.1371/journal.pbio.3001650
https://doi.org/10.1371/journal.pbio.3001650
https://doi.org/10.1371/journal.pbio.3001650
https://doi.org/10.1371/journal.pbio.3001650
https://doi.org/10.1016/j.brs.2020.10.002
https://doi.org/10.1016/j.brs.2020.10.002
https://doi.org/10.1016/j.brs.2020.10.002
https://doi.org/10.1073/pnas.1912927116
https://doi.org/10.1073/pnas.1912927116
https://doi.org/10.1073/pnas.1912927116
https://doi.org/10.1073/pnas.1912927116
https://doi.org/10.1073/pnas.1912927116
https://doi.org/10.1038/s41467-018-02928-3
https://doi.org/10.1038/s41467-018-02928-3
https://doi.org/10.1038/s41467-018-02928-3
https://doi.org/10.1038/s41467-018-02928-3
https://doi.org/10.1038/s41467-018-02928-3
https://doi.org/10.1038/s41467-017-01045-x
https://doi.org/10.1038/s41467-017-01045-x
https://doi.org/10.1038/s41467-017-01045-x
https://doi.org/10.1038/s41467-017-01045-x
https://doi.org/10.1038/s41467-017-01045-x
https://doi.org/10.1111/tops.12474
https://doi.org/10.1111/tops.12474
https://doi.org/10.1111/tops.12474
https://doi.org/10.1111/tops.12474
https://doi.org/10.1111/tops.12474
https://doi.org/10.1088/1741-2552/aadbb1
https://doi.org/10.1088/1741-2552/aadbb1
https://doi.org/10.1088/1741-2552/aadbb1
https://doi.org/10.1088/1741-2552/aadbb1
https://doi.org/10.1016/j.plrev.2025.03.008
https://doi.org/10.1016/j.plrev.2025.03.008
https://doi.org/10.1016/j.plrev.2025.03.008
https://doi.org/10.1016/j.plrev.2025.03.008
https://doi.org/10.1016/j.plrev.2025.03.008
https://doi.org/10.1007/s00221-019-05666-0
https://doi.org/10.1007/s00221-019-05666-0
https://doi.org/10.1007/s00221-019-05666-0
https://doi.org/10.1038/s41467-021-22468-7
https://doi.org/10.1038/s41467-021-22468-7
https://doi.org/10.1038/s41467-021-22468-7
https://doi.org/10.1038/s41467-021-22468-7
https://doi.org/10.1038/s41467-021-22468-7
https://doi.org/10.1298/ptr.R0035
https://doi.org/10.1298/ptr.R0035
https://doi.org/10.1298/ptr.R0035
https://doi.org/10.1298/ptr.R0035
https://doi.org/10.3389/fnins.2023.1091925
https://doi.org/10.3389/fnins.2023.1091925
https://doi.org/10.3389/fnins.2023.1091925

org/10.3389/fnins.2023.1091925

[32] Opitz A, Falchier A, Yan CG, Yeagle EM, Linn GS, Megevand
P, et al. (2016). Spatiotemporal structure of intracranial
electric fields induced by transcranial electric stimulation
in humans and nonhuman primates. Sci Rep, 6, 31236.
https://doi.org/10.1038/srep31236

[33] Sadeghihassanabadi F, Misselhorn J, Gerloff C, Zittel S.
(2022). Optimizing the montage for cerebellar transcranial
alternating current stimulation (tACS): a combined com-
putational and experimental study. J Neural Eng, 19(2),
026060. https://doi.org/10.1088/1741-2552/ac676f

[34] Van Hoornweder S, Cappozzo V, De Herde L, Puonti O,
Siebner HR, Meesen RLJ, et al. (2024). Head and shoul-
ders-The impact of an extended head model on the simu-
lation and optimization of transcranial electric stimulation.
Imaging Neurosci (Camb), 2, imag-2-00379. https://doi.
org/10.1162/imag_a_00379

[35] Kasten FH, Duecker K, Maack MC, Meiser A, Herrmann
CS. (2019). Integrating electric field modeling and neuro-
imaging to explain inter-individual variability of tACS ef-
fects. Nat Commun, 10(1), 5427. https://doi.org/10.1038/
s41467-019-13417-6

[36] Miranda PC, Callejon-Leblic MA, Salvador R, Ruffini G.
(2018). Realistic modeling of transcranial current stimula-
tion: the electric field in the brain. Curr Opin Biomed Eng, 8,
20-27. https://doi.org/10.1016/j.cobme.2018.09.002

[37] Hunold A, Haueisen J, Nees F, Moliadze V. (2023). Review
of individualized current flow modeling studies for tran-
scranial electrical stimulation. J Neurosci Res, 101(4),
405-423. https://doi.org/10.1002/jnr.25154

[38] Huang Y, Datta A, Bikson M, Parra LC. (2019). Realistic
volumetric-approach to simulate transcranial electric stim-
ulation-ROAST-a fully automated open-source pipeline. J
Neural Eng, 16(5), 056006. https://doi.org/10.1088/1741-
2552/ab208d

[39] Thielscher A, Antunes A, Saturnino GB. (2015). Field mod-
eling for transcranial magnetic stimulation: a useful tool
to understand the physiological effects of TMS? Conf
Proc IEEE Eng Med Biol Soc, 2015, 222-225. https://doi.
org/10.1109/EMBC.2015.7318340

[40] Nielsen JD, Madsen KH, Puonti O, Siebner HR, Bauer C,
Madsen CG, et al. (2018). Automatic skull segmentation
from MR images for realistic volume conductor models
of the head: Assessment of the state-of-the-art. Neuro-
image, 174, 587-598. https://doi.org/10.1016/j.neuroim-
age.2018.03.001

[41] Lee C, Jung YJ, Lee SJ, Im CH. (2017). COMETS2: An
advanced MATLAB toolbox for the numerical analysis
of electric fields generated by transcranial direct current
stimulation. J Neurosci Methods, 277, 56-62. https://doi.
org/10.1016/j.jneumeth.2016.12.008

[42] Dannhauer M, Brooks D, Tucker D, MacLeod R. (2012).
A pipeline for the simulation of transcranial direct cur-
rent stimulation for realistic human head models us-
ing SCIRun/BioMesh3D. Annu Int Conf IEEE Eng Med
Biol Soc, 2012, 5486-5489. https://doi.org/10.1109/
EMBC.2012.6347236

[43] Wagner S, Rampersad SM, Aydin U, Vorwerk J, Oostendorp
TF, Neuling T, et al. (2014). Investigation of tDCS volume
conduction effects in a highly realistic head model. J
Neural Eng, 11(1), 016002. https://doi.org/10.1088/1741-

https://doi.org/10.71321/wyq6hf65

2560/11/1/016002

[44] Ruffini G, Wendling F, Merlet I, Molaee-Ardekani B, Me-
konnen A, Salvador R, et al. (2013). Transcranial current
brain stimulation (tCS): models and technologies. |IEEE
Trans Neural Syst Rehabil Eng, 21(3), 333-45. https://doi.
org/10.1109/TNSRE.2012.2200046

[45] Gaugain G, Quéguiner L, Bikson M, Sauleau R, Zhadobov M,
Modolo J, et al. (2023). Quasi-static approximation error of
electric field analysis for transcranial current stimulation. J
Neural Eng, 20(1), 016027. https://doi.org/10.1088/1741-
2552/acb14d

[46] Huang Y, Liu AA, Lafon B, Friedman D, Dayan M, Wang X,
et al. (2017). Measurements and models of electric fields
in the in vivo human brain during transcranial electric
stimulation. Elife, 6, e18834. https://doi.org/10.7554/
elLife.18834

[47] Opitz A, Yeagle E, Thielscher A, Schroeder C, Mehta AD,
Milham MP. (2018). On the importance of precise elec-
trode placement for targeted transcranial electric stimula-
tion. Neuroimage, 181, 560-567. https://doi.org/10.1016/
j-.neuroimage.2018.07.027

[48] Berger TA, Wischnewski M, Opitz A, Alekseichuk I. (2025).
Human head models and populational framework for sim-
ulating brain stimulations. Sci Data, 12(1), 516. https://doi.
org/10.1038/s41597-025-04886-0

[49] McCann H, Pisano G, Beltrachini L. (2019). Variation in
reported human head tissue electrical conductivity values.
Brain Topogr, 32(5), 825-858. https://doi.org/10.1007/
$10548-019-00710-2

[50] Alekseichuk I, Pabel SC, Antal A, Paulus W. (2017). In-
trahemispheric theta rhythm desynchronization impairs
working memory. Restor Neurol Neurosci, 35(2), 147-158.
https://doi.org/10.3233/RNN-160714

[51] Alekseichuk I, Falchier AY, Linn G, Xu T, Milham MP, Schro-
eder CE, et al. (2019). Electric field dynamics in the brain
during multi-electrode transcranial electric stimulation.
Nat Commun, 10(1), 2573. https://doi.org/10.1038/
s41467-019-10581-7

[52] Lee S, Shirinpour S, Alekseichuk |, Perera N, Linn G, Schro-
eder CE, et al. (2023). Predicting the phase distribution
during multi-channel transcranial alternating current stimu-
lation in silico and in vivo. Comput Biol Med, 166, 107516.
https://doi.org/10.1016/j.compbiomed.2023.107516

[53] Alekseichuk I, Mantell K, Shirinpour S, Opitz A. (2019).
Comparative modeling of transcranial magnetic and
electric stimulation in mouse, monkey, and human. Neu-
roimage, 194, 136-148. https://doi.org/10.1016/j.neuroim-
age.2019.03.044

[54] Ma WW, Wang FX, Yi YY, Huang Y, Li XY, Liu YO, et al. (2024).
Mapping the electric field of high-definition transcranial
electrical stimulation across the lifespan. Sci Bull, 69(24),
3876-3888. https://doi.org/10.1016/j.scib.2024.10.001

[55] Hodgkin AL, Huxley AF. (1952). A quantitative description
of membrane current and its application to conduction
and excitation in nerve. J Physiol, 117(4), 500-44. https://
doi.org/10.1113/jphysiol.1952.sp004764

[56] David S, Bruce G, Andrew G, editor. Principles of computa-
tional modelling in neuroscience. 1st ed. New York: Cam-
bridge University Press; 2011.

[57] Hines ML, Carnevale NT. (1997). The NEURON simulation
environment. Neural Comput, 9(6), 1179-209. https://doi.

51


https://doi.org/10.3389/fnins.2023.1091925
https://doi.org/10.1038/srep31236
https://doi.org/10.1038/srep31236
https://doi.org/10.1038/srep31236
https://doi.org/10.1038/srep31236
https://doi.org/10.1038/srep31236
https://doi.org/10.1088/1741-2552/ac676f
https://doi.org/10.1088/1741-2552/ac676f
https://doi.org/10.1088/1741-2552/ac676f
https://doi.org/10.1088/1741-2552/ac676f
https://doi.org/10.1088/1741-2552/ac676f
https://doi.org/10.1162/imag_a_00379
https://doi.org/10.1162/imag_a_00379
https://doi.org/10.1162/imag_a_00379
https://doi.org/10.1162/imag_a_00379
https://doi.org/10.1162/imag_a_00379
https://doi.org/10.1162/imag_a_00379
https://doi.org/10.1038/s41467-019-13417-6
https://doi.org/10.1038/s41467-019-13417-6
https://doi.org/10.1038/s41467-019-13417-6
https://doi.org/10.1038/s41467-019-13417-6
https://doi.org/10.1038/s41467-019-13417-6
https://doi.org/10.1016/j.cobme.2018.09.002
https://doi.org/10.1016/j.cobme.2018.09.002
https://doi.org/10.1016/j.cobme.2018.09.002
https://doi.org/10.1016/j.cobme.2018.09.002
https://doi.org/10.1002/jnr.25154
https://doi.org/10.1002/jnr.25154
https://doi.org/10.1002/jnr.25154
https://doi.org/10.1002/jnr.25154
https://doi.org/10.1088/1741-2552/ab208d
https://doi.org/10.1088/1741-2552/ab208d
https://doi.org/10.1088/1741-2552/ab208d
https://doi.org/10.1088/1741-2552/ab208d
https://doi.org/10.1088/1741-2552/ab208d
https://doi.org/10.1109/EMBC.2015.7318340
https://doi.org/10.1109/EMBC.2015.7318340
https://doi.org/10.1109/EMBC.2015.7318340
https://doi.org/10.1109/EMBC.2015.7318340
https://doi.org/10.1109/EMBC.2015.7318340
https://doi.org/10.1016/j.neuroimage.2018.03.001
https://doi.org/10.1016/j.neuroimage.2018.03.001
https://doi.org/10.1016/j.neuroimage.2018.03.001
https://doi.org/10.1016/j.neuroimage.2018.03.001
https://doi.org/10.1016/j.neuroimage.2018.03.001
https://doi.org/10.1016/j.neuroimage.2018.03.001
https://doi.org/10.1016/j.jneumeth.2016.12.008
https://doi.org/10.1016/j.jneumeth.2016.12.008
https://doi.org/10.1016/j.jneumeth.2016.12.008
https://doi.org/10.1016/j.jneumeth.2016.12.008
https://doi.org/10.1016/j.jneumeth.2016.12.008
https://doi.org/10.1109/EMBC.2012.6347236
https://doi.org/10.1109/EMBC.2012.6347236
https://doi.org/10.1109/EMBC.2012.6347236
https://doi.org/10.1109/EMBC.2012.6347236
https://doi.org/10.1109/EMBC.2012.6347236
https://doi.org/10.1109/EMBC.2012.6347236
https://doi.org/10.1088/1741-2560/11/1/016002
https://doi.org/10.1088/1741-2560/11/1/016002
https://doi.org/10.1088/1741-2560/11/1/016002
https://doi.org/10.1088/1741-2560/11/1/016002
https://doi.org/10.1088/1741-2560/11/1/016002
https://doi.org/10.1109/TNSRE.2012.2200046
https://doi.org/10.1109/TNSRE.2012.2200046
https://doi.org/10.1109/TNSRE.2012.2200046
https://doi.org/10.1109/TNSRE.2012.2200046
https://doi.org/10.1109/TNSRE.2012.2200046
https://doi.org/10.1088/1741-2552/acb14d
https://doi.org/10.1088/1741-2552/acb14d
https://doi.org/10.1088/1741-2552/acb14d
https://doi.org/10.1088/1741-2552/acb14d
https://doi.org/10.1088/1741-2552/acb14d
https://doi.org/10.7554/eLife.18834
https://doi.org/10.7554/eLife.18834
https://doi.org/10.7554/eLife.18834
https://doi.org/10.7554/eLife.18834
https://doi.org/10.7554/eLife.18834
https://doi.org/10.1016/j.neuroimage.2018.07.027
https://doi.org/10.1016/j.neuroimage.2018.07.027
https://doi.org/10.1016/j.neuroimage.2018.07.027
https://doi.org/10.1016/j.neuroimage.2018.07.027
https://doi.org/10.1016/j.neuroimage.2018.07.027
https://doi.org/10.1038/s41597-025-04886-0
https://doi.org/10.1038/s41597-025-04886-0
https://doi.org/10.1038/s41597-025-04886-0
https://doi.org/10.1038/s41597-025-04886-0
https://doi.org/10.1007/s10548-019-00710-2
https://doi.org/10.1007/s10548-019-00710-2
https://doi.org/10.1007/s10548-019-00710-2
https://doi.org/10.1007/s10548-019-00710-2
https://doi.org/10.3233/RNN-160714
https://doi.org/10.3233/RNN-160714
https://doi.org/10.3233/RNN-160714
https://doi.org/10.3233/RNN-160714
https://doi.org/10.1038/s41467-019-10581-7
https://doi.org/10.1038/s41467-019-10581-7
https://doi.org/10.1038/s41467-019-10581-7
https://doi.org/10.1038/s41467-019-10581-7
https://doi.org/10.1038/s41467-019-10581-7
https://doi.org/10.1016/j.compbiomed.2023.107516
https://doi.org/10.1016/j.compbiomed.2023.107516
https://doi.org/10.1016/j.compbiomed.2023.107516
https://doi.org/10.1016/j.compbiomed.2023.107516
https://doi.org/10.1016/j.compbiomed.2023.107516
https://doi.org/10.1016/j.neuroimage.2019.03.044
https://doi.org/10.1016/j.neuroimage.2019.03.044
https://doi.org/10.1016/j.neuroimage.2019.03.044
https://doi.org/10.1016/j.neuroimage.2019.03.044
https://doi.org/10.1016/j.neuroimage.2019.03.044
https://doi.org/10.1016/j.scib.2024.10.001
https://doi.org/10.1016/j.scib.2024.10.001
https://doi.org/10.1016/j.scib.2024.10.001
https://doi.org/10.1016/j.scib.2024.10.001
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1162/neco.1997.9.6.1179
https://doi.org/10.1162/neco.1997.9.6.1179

Brain Conflux

org/10.1162/neco.1997.9.6.1179

[58] Anastassiou CA, Montgomery SM, Barahona M, Buzsaki
G, Koch C. (2010). The effect of spatially inhomoge-
neous extracellular electric fields on neurons. J Neurosci,
30(5), 1925-1936. https://doi.org/10.1523/IJNEUROS-
Cl1.3635-09.2010

[59] Toloza EHS, Negahbani E, Frohlich F. (2018). Ih interacts
with somato-dendritic structure to determine frequency
response to weak alternating electric field stimulation. J
Neurophysiol, 119(3), 1029-1036. https://doi.org/10.1152/
jn.00541.2017

[60] Tran H, Shirinpour S, Opitz A. (2022). Effects of transcra-
nial alternating current stimulation on spiking activity in
computational models of single neocortical neurons. Neu-
roimage, 250, 118953. https://doi.org/10.1016/j.neuroim-
age.2022.118953

[61] Aberra AS, Wang R, Grill WM, Peterchev AV. (2023). Multi-
scale model of axonal and dendritic polarization by
transcranial direct current stimulation in realistic head
geometry. Brain Stimul, 16(6), 1776-1791. https://doi.
org/10.1016/j.brs.2023.11.018

[62] Bikson M, Dmochowski J, Rahman A. (2013). The "qua-
si-uniform" assumption in animal and computational
models of non-invasive electrical stimulation. Brain Stimul,
6(4), 704-705. https://doi.org/10.1016/j.brs.2012.11.005

[63] Jackson MP, Rahman A, Lafon B, Kronberg G, Ling D, Par-
ra LC, et al. (2016). Animal models of transcranial direct
current stimulation: Methods and mechanisms. Clin Neu-
rophysiol, 127(11), 3425-3454. https://doi.org/10.1016/
j.clinph.2016.08.016

[64] Radman T, Ramos RL, Brumberg JC, Bikson M. (2009).
Role of cortical cell type and morphology in subthresh-
old and suprathreshold uniform electric field stimula-
tion in vitro. Brain Stimul, 2(4), 215-228.e3. https://doi.
org/10.1016/j.brs.2009.03.007

[65] Bikson M, Inoue M, Akiyama H, Deans JK, Fox JE, Miya-
kawa H, et al. (2004). Effects of uniform extracellular DC
electric fields on excitability in rat hippocampal slices in vi-
tro. J Physiol, 557(Pt 1), 175-190. https://doi.org/10.1113/
jphysiol.2003.055772

[66] Aspart F, Remme MWH, Obermayer K. (2018). Differen-
tial polarization of cortical pyramidal neuron dendrites
through weak extracellular fields. PLoS Comput Biol, 14(5),
€1006124. https://doi.org/10.1371/journal.pcbi.1006124

[67] Huang X, Wang J, Yi G. (2024). Frequency-domain analysis
of membrane polarization in two-compartment model neu-
rons with weak alternating electric fields. Cogn Neurodyn,
18(3), 1245-1264. https://doi.org/10.1007/s11571-023-
09980-w

[68] Huang X, Wei X, Wang J, Yi G. (2024). Frequency-depen-
dent membrane polarization across neocortical cell types
and subcellular elements by transcranial alternating cur-
rent stimulation. J Neural Eng, 21(1), 016034. https://doi.
org/10.1088/1741-2552/ad2b8a

[69] Gaugain G, Al Harrach M, Yochum M, Wendling F, Bikson M,
Modolo J, et al. (2025). Frequency-dependent phase en-
trainment of cortical cell types during tACS: computational
modeling evidence. J Neural Eng, 22(1), 016028. https://
doi.org/10.1088/1741-2552/ad9526

[70] Aspart F, Ladenbauer J, Obermayer K. (2016). Extending
integrate-and-fire model neurons to account for the effects

52

of weak electric fields and input filtering mediated by the
dendrite. PLoS Comput Biol, 12(11), e1005206. https://doi.
org/10.1371/journal.pcbi. 1005206

[71] Ladenbauer J, Obermayer K. (2019). Weak electric fields
promote resonance in neuronal spiking activity: Ana-
lytical results from two-compartment cell and network
models. PLoS Comput Biol, 15(4), €1006974. https://doi.
org/10.1371/journal.pcbi. 1006974

[72] Brette R. (2015). What is the most realistic single-compart-
ment model of spike initiation?. PLoS Comput Biol, 11(4),
e1004114. https://doi.org/10.1371/journal.pcbi. 1004114

[73] Huang X, Wei X, Wang J, Yi G. (2025). Effects of transcrani-
al alternating current stimulation on spike train correlation
in two-compartment model neurons. Biol Cybern, 119(4-6),
26. https://doi.org/10.1007/s00422-025-01025-1

[74] Yi GS, Wang J, Wei XL, Tsang KM, Chan WL, Deng B, et al.
(2014). Exploring how extracellular electric field modulates
neuron activity through dynamical analysis of a two-com-
partment neuron model. J Comput Neurosci, 36(3), 383-
399. https://doi.org/10.1007/s10827-013-0479-z

[75] Zhao Z, Shirinpour S, Tran H, Wischnewski M, Opitz A.
(2024). Intensity- and frequency-specific effects of tran-
scranial alternating current stimulation are explained by
network dynamics. J Neural Eng, 21(2), 026024. https://
doi.org/10.1088/1741-2552/ad37d9

[76] Markram H, Muller E, Ramaswamy S, Reimann MW, Ab-
dellah M, Sanchez CA, et al. (2015). Reconstruction and
simulation of neocortical microcircuitry. Cell, 163, 456-92.
https://doi.org/10.1016/j.cell.2015.09.029

[77] Huang X, Wei X, Wang J, Yi G. (2025). Multi-scale model
of neural entrainment by transcranial alternating current
stimulation in realistic cortical anatomy. J Comput Neuro-
sci. https://doi.org/10.1007/s10827-025-00912-7

[78] Aberra AS, Wang B, Grill WM, Peterchev AV. (2020). Sim-
ulation of transcranial magnetic stimulation in head
model with morphologically-realistic cortical neurons.
Brain Stimul, 13(1), 175-189. https://doi.org/10.1016/
j-brs.2019.10.002

[79] Dura-Bernal S, Griffith EY, Barczak A, O'Connell MN, Mc-
Ginnis T, Moreira JVS, et al. (2023). Data-driven multiscale
model of macaque auditory thalamocortical circuits repro-
duces in vivo dynamics. Cell Rep, 42(11), 113378. https://
doi.org/10.1016/j.celrep.2023.113378

[80] Yokota T, Maki T, Nagata T, Murakami T, Ugawa Y, Laak-
so |, et al. (2019). Real-time estimation of electric fields
induced by transcranial magnetic stimulation with deep
neural networks. Brain Stimul, 12(6), 1500-1507. https:/
doi.org/10.1016/j.brs.2019.06.015

[81] Li H, Deng ZD, Oathes D, Fan Y. (2022). Computation of
transcranial magnetic stimulation electric fields using
self-supervised deep learning. Neuroimage, 264, 119705.
https://doi.org/10.1016/j.neuroimage.2022.119705

[82] Aberra AS, Lopez A, Grill WM, Peterchev AV. (2023). Rap-
id estimation of cortical neuron activation thresholds by
transcranial magnetic stimulation using convolutional
neural networks. Neuroimage, 275, 120184. https://doi.
org/10.1016/j.neuroimage.2023.120184

[83] Beniaguev D, Segev |, London M. (2021). Single corti-
cal neurons as deep artificial neural networks. Neuron,
109(17), 2727-2739.€3. https://doi.org/10.1016/j.neu-
ron.2021.07.002


https://doi.org/10.1162/neco.1997.9.6.1179
https://doi.org/10.1523/JNEUROSCI.3635-09.2010
https://doi.org/10.1523/JNEUROSCI.3635-09.2010
https://doi.org/10.1523/JNEUROSCI.3635-09.2010
https://doi.org/10.1523/JNEUROSCI.3635-09.2010
https://doi.org/10.1523/JNEUROSCI.3635-09.2010
https://doi.org/10.1152/jn.00541.2017
https://doi.org/10.1152/jn.00541.2017
https://doi.org/10.1152/jn.00541.2017
https://doi.org/10.1152/jn.00541.2017
https://doi.org/10.1152/jn.00541.2017
https://doi.org/10.1016/j.neuroimage.2022.118953
https://doi.org/10.1016/j.neuroimage.2022.118953
https://doi.org/10.1016/j.neuroimage.2022.118953
https://doi.org/10.1016/j.neuroimage.2022.118953
https://doi.org/10.1016/j.neuroimage.2022.118953
https://doi.org/10.1016/j.brs.2023.11.018
https://doi.org/10.1016/j.brs.2023.11.018
https://doi.org/10.1016/j.brs.2023.11.018
https://doi.org/10.1016/j.brs.2023.11.018
https://doi.org/10.1016/j.brs.2023.11.018
https://doi.org/10.1016/j.brs.2012.11.005
https://doi.org/10.1016/j.brs.2012.11.005
https://doi.org/10.1016/j.brs.2012.11.005
https://doi.org/10.1016/j.brs.2012.11.005
https://doi.org/10.1016/j.clinph.2016.08.016
https://doi.org/10.1016/j.clinph.2016.08.016
https://doi.org/10.1016/j.clinph.2016.08.016
https://doi.org/10.1016/j.clinph.2016.08.016
https://doi.org/10.1016/j.clinph.2016.08.016
https://doi.org/10.1016/j.brs.2009.03.007
https://doi.org/10.1016/j.brs.2009.03.007
https://doi.org/10.1016/j.brs.2009.03.007
https://doi.org/10.1016/j.brs.2009.03.007
https://doi.org/10.1016/j.brs.2009.03.007
https://doi.org/10.1113/jphysiol.2003.055772
https://doi.org/10.1113/jphysiol.2003.055772
https://doi.org/10.1113/jphysiol.2003.055772
https://doi.org/10.1113/jphysiol.2003.055772
https://doi.org/10.1113/jphysiol.2003.055772
https://doi.org/10.1371/journal.pcbi.1006124
https://doi.org/10.1371/journal.pcbi.1006124
https://doi.org/10.1371/journal.pcbi.1006124
https://doi.org/10.1371/journal.pcbi.1006124
https://doi.org/10.1007/s11571-023-09980-w
https://doi.org/10.1007/s11571-023-09980-w
https://doi.org/10.1007/s11571-023-09980-w
https://doi.org/10.1007/s11571-023-09980-w
https://doi.org/10.1007/s11571-023-09980-w
https://doi.org/10.1088/1741-2552/ad2b8a
https://doi.org/10.1088/1741-2552/ad2b8a
https://doi.org/10.1088/1741-2552/ad2b8a
https://doi.org/10.1088/1741-2552/ad2b8a
https://doi.org/10.1088/1741-2552/ad2b8a
https://doi.org/10.1088/1741-2552/ad9526
https://doi.org/10.1088/1741-2552/ad9526
https://doi.org/10.1088/1741-2552/ad9526
https://doi.org/10.1088/1741-2552/ad9526
https://doi.org/10.1088/1741-2552/ad9526
https://doi.org/10.1371/journal.pcbi.1005206
https://doi.org/10.1371/journal.pcbi.1005206
https://doi.org/10.1371/journal.pcbi.1005206
https://doi.org/10.1371/journal.pcbi.1005206
https://doi.org/10.1371/journal.pcbi.1005206
https://doi.org/10.1371/journal.pcbi.1006974
https://doi.org/10.1371/journal.pcbi.1006974
https://doi.org/10.1371/journal.pcbi.1006974
https://doi.org/10.1371/journal.pcbi.1006974
https://doi.org/10.1371/journal.pcbi.1006974
https://doi.org/10.1371/journal.pcbi.1004114
https://doi.org/10.1371/journal.pcbi.1004114
https://doi.org/10.1371/journal.pcbi.1004114
https://doi.org/10.1007/s00422-025-01025-1
https://doi.org/10.1007/s00422-025-01025-1
https://doi.org/10.1007/s00422-025-01025-1
https://doi.org/10.1007/s00422-025-01025-1
https://doi.org/10.1007/s10827-013-0479-z
https://doi.org/10.1007/s10827-013-0479-z
https://doi.org/10.1007/s10827-013-0479-z
https://doi.org/10.1007/s10827-013-0479-z
https://doi.org/10.1007/s10827-013-0479-z
https://doi.org/10.1088/1741-2552/ad37d9
https://doi.org/10.1088/1741-2552/ad37d9
https://doi.org/10.1088/1741-2552/ad37d9
https://doi.org/10.1088/1741-2552/ad37d9
https://doi.org/10.1088/1741-2552/ad37d9
https://doi.org/10.1016/j.cell.2015.09.029
https://doi.org/10.1016/j.cell.2015.09.029
https://doi.org/10.1016/j.cell.2015.09.029
https://doi.org/10.1016/j.cell.2015.09.029
https://doi.org/10.1007/s10827-025-00912-7
https://doi.org/10.1007/s10827-025-00912-7
https://doi.org/10.1007/s10827-025-00912-7
https://doi.org/10.1007/s10827-025-00912-7
https://doi.org/10.1016/j.brs.2019.10.002
https://doi.org/10.1016/j.brs.2019.10.002
https://doi.org/10.1016/j.brs.2019.10.002
https://doi.org/10.1016/j.brs.2019.10.002
https://doi.org/10.1016/j.brs.2019.10.002
https://doi.org/10.1016/j.celrep.2023.113378
https://doi.org/10.1016/j.celrep.2023.113378
https://doi.org/10.1016/j.celrep.2023.113378
https://doi.org/10.1016/j.celrep.2023.113378
https://doi.org/10.1016/j.celrep.2023.113378
https://doi.org/10.1016/j.brs.2019.06.015
https://doi.org/10.1016/j.brs.2019.06.015
https://doi.org/10.1016/j.brs.2019.06.015
https://doi.org/10.1016/j.brs.2019.06.015
https://doi.org/10.1016/j.brs.2019.06.015
https://doi.org/10.1016/j.neuroimage.2022.119705
https://doi.org/10.1016/j.neuroimage.2022.119705
https://doi.org/10.1016/j.neuroimage.2022.119705
https://doi.org/10.1016/j.neuroimage.2022.119705
https://doi.org/10.1016/j.neuroimage.2023.120184
https://doi.org/10.1016/j.neuroimage.2023.120184
https://doi.org/10.1016/j.neuroimage.2023.120184
https://doi.org/10.1016/j.neuroimage.2023.120184
https://doi.org/10.1016/j.neuroimage.2023.120184
https://doi.org/10.1016/j.neuron.2021.07.002
https://doi.org/10.1016/j.neuron.2021.07.002
https://doi.org/10.1016/j.neuron.2021.07.002
https://doi.org/10.1016/j.neuron.2021.07.002

https://doi.org/10.71321/wyq6hf65

[84] Yamins DL, DiCarlo JJ. (2016). Using goal-driven deep
learning models to understand sensory cortex. Nat Neuro-
sci, 19(3), 356-65. https://doi.org/10.1038/nn.4244

53


https://doi.org/10.1038/nn.4244
https://doi.org/10.1038/nn.4244
https://doi.org/10.1038/nn.4244

