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Abstract

Transcranial alternating current stimulation (tACS) is a non-invasive neuromodulation technique that generates weak oscillatory electric fields 
(EFs) in the brain and has shown promise for probing neural oscillations and treating neuropsychiatric disorders. However, its effects on neural 
activity remain highly variable across studies, and controversies persist regarding whether conventional tACS intensities can genuinely entrain 
neuronal firing. Experimental approaches alone have limited capacity to resolve these inconsistencies. Computational modeling provides a 
powerful complementary framework to quantify induced EFs, predict cellular responses, and generate mechanistic hypotheses. In this review, 
we focus on multiscale models spanning from macroscopic realistic head models to microscopic multi-compartmental neuronal models. Head 
models elucidate how anatomy, tissue conductivity, stimulation parameters, and electrode montage shape the spatial distribution of tACS-in-
duced fields, while multi-compartmental models reveal how EFs, neuronal morphology, biophysics, and synaptic inputs govern cell-type-specific 
polarization and spike entrainment. We highlight key insights, unresolved controversies, and emerging trends, including the integration of head 
and neuronal models, network-level simulations, and the use of artificial intelligence to bridge scales. By critically synthesizing advances in mul-
tiscale modeling, we argue that coupling computational frameworks with experimental recordings is essential for explaining the diversity of tACS 
effects and for translating mechanistic insights into individualized, clinically effective interventions.
Keywords: Transcranial alternating current stimulation; computational modeling; induced electric field; multi-compartmental neuronal models; 
membrane polarization; spike entrainment.
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Multiscale Modeling of Transcranial Alternating Current Stimulation: 
Induced Electric Field and Cellular Responses

Introduction

Transcranial alternating current stimulation (tACS) uses scalp 
electrodes to apply low-intensity current (typically no more 
than 2 mA) at a specific frequency to modulate neural activ-
ity in a noninvasive and tolerable manner [1, 2]. By targeting 
endogenous oscillations, tACS provides a unique opportunity 
to probe the causal relationship between neural oscillations, 
cognition, and behavior [3, 4], and it is increasingly explored 
as a therapeutic strategy for neuropsychiatric disorders [5-7]. 
Despite rapid growth in experimental and clinical applications, 
the mechanisms by which tACS shapes neural dynamics re-
main incompletely understood. 
At the core of tACS action are oscillatory electric fields (EFs) 
generated within the brain [8]. Such field is the acting force for 
driving its effects on neural activity [3]. The weak oscillatory 
field induced by tACS is not strong enough to activate action 
potentials in resting neurons, which is traditionally categorized 

as a subthreshold stimulation. Experimental recordings in 
rats [9-13], ferrets [14, 15], nonhuman primates [16-20], and 
humans [13] showed that such weak EFs can modulate spike 
timing and entrain neural activity. The above interventions are 
determined by EF strength and frequency, which also depend 
on cell type and ongoing oscillations. Particularly, tACS-in-
duced effects on neural activity are highly variable across 
studies, and some findings are not fully reliable and difficult to 
replicate. This inconsistency has fueled ongoing debate over 
whether conventional tACS intensities, commonly 1-2 mA at 
the scalp, can genuinely entrain neural firing in vivo [21-24].
Computational modeling has emerged as a powerful com-
plement to experimental approaches for addressing these 
controversies. Models can quantify EF distributions across 
tissues, test mechanistic hypotheses at the cellular level, and 
guide experimental design and clinical protocols [25-26]. In 
particular, realistic head models allow estimation of EF distri-
bution across brain regions based on individual anatomy, while 



Brain Conflux

44

multi-compartmental neuronal models capture the morphol-
ogy- and biophysics-dependent responses of single cells to 
applied fields. Integrating these scales enables mechanistic 
insights into how tACS affects neural activity, from the distri-
bution of currents in the brain to the entrainment of individual 
neurons.
Previous studies [2-5, 8, 27-31] summarized the neurophysi-
ological and cognitive effects of tACS and discussed meth-
odological challenges. In contrast, our review focuses specif-
ically on multiscale computational modeling. We first outline 
advances in realistic head models that predict EF distributions, 
then examine multi-compartmental neuronal models that char-
acterize cellular polarization and spiking entrainment. Finally, 
we discuss how integrating these approaches can resolve 
current controversies, highlight emerging directions such as 
network-level and artificial intelligence-assisted modeling, and 
consider the implications for translating tACS into individual-
ized, clinically effective neuromodulation. 

Realistic Head Models of tACS

tACS generates oscillating EFs across brain tissues, which are 
usually measured in units of voltage per meter (V/m) or milli-
volts per millimeter (mV/mm) [3, 32]. As noted, the fluctuating 
EF is the acting force of tACS. Therefore, calculation of EF in 
the target region is a first step to mechanistically understand 
cellular responses via modeling. Measured EFs can also be 
used to facilitate electrode montage selection and individual-
ized dosing [3, 33, 34], and to predict inter-individual variability 
in tACS effects [35].
Realistic head models are powerful tools for predicting EF 
distribution induced in the brain during tACS [36, 37], which 
are often impractical to measure using experimental methods 
alone. These head models are created from anatomical mag-
netic resonance imaging (MRI), segmented into different tis-
sue types such as scalp, skull, cerebrospinal fluid, gray matter, 
and white matter. The typical workflow includes MRI segmen-
tation, 3D-surface tissue reconstruction, electrode placement, 
volume mesh generation, assignment of electrical conductivity 
and permittivity, specification of physics settings and bound-
ary conditions, and finite element method (FEM) calculation 
[36, 38]. Common toolboxes used for simulating EF in realistic 
head models include SimNIBS [39, 40], COMETS2 [41], ROAST 
[38], SCIRun [42], and SimBio [43]. These toolboxes use FEM to 
numerically calculate EFs. Note that when calculating tACS-in-
duced fields, it is usually assumed that the coupling between 
electric and magnetic fields is negligible, i.e., the quasi-static 
approximation [44]. This approximation is valid in the frequen-
cy range currently used for tACS [45]. 
The calculation of EF induced by tACS depends on the elec-
trical conductivity of brain tissues. Since tissue conductivity 
varies between individuals, it is necessary to validate the pre-
dictions of a head model with in vivo measurements. Huang et 
al [46] directly measured EF in ten epilepsy patients generated 
by tACS and calibrated individual head models by adjusting 
skull, scalp, and brain conductivities to match recorded EFs. 
The resulting individualized models predicted EF spatial dis-
tribution with high accuracy for all subjects. Their validation 
results were later confirmed by Opitz et al [47], which con-
sistently showed that realistic brain models using standard 

conductivities slightly misestimate the measured EF strength, 
suggesting the need for individual adjustments of tissue con-
ductivities. Further, tissue conductivity exhibits inter-individ-
ual variability, and accounting for this variation is crucial for 
gaining better insights into stimulation mechanisms. However, 
many tACS modeling studies are based on a single exemplary 
head model. To capture anatomical and tissue variabilities, 
Berger et al [48] recently created a comprehensive dataset 
of 100 quality-assured realistic head models with variable 
tissue conductivities based on individual imaging data from 
the Human Connectome Project s1200 release. To reflect in-
ter-individual variability, the scalp, skull, and grey matter tissue 
conductivities for each model were assigned pseudo-randomly 
from biologically plausible distributions [49]. The cerebrospinal 
fluid, white matter, and eye tissue conductivities were fixed at 
the default setting. To assess the quality of each head mesh, 
the authors performed a semi-manual correction for tissue 
accuracy and quality measurements of finite-element analysis. 
They also provided the simulation results of exemplary tACS 
montage based on a desynchronized montage outlined by 
Alekseichuk et al [50]. The dataset of their head models can 
assist in population variability analysis, meta-modeling tech-
niques, and stimulation target optimization.  
Other factors affecting tACS-induced EF distribution include 
stimulation current intensity, frequency, phase, electrode 
placement, and head anatomy. Recordings in surgical epilepsy 
patients [46] showed that the maximum EF exhibits approx-
imately linear dependence on stimulation current intensity, 
which is about 0.4-0.5 V/m in human when current intensity 
is 1 mA from peak-to-baseline. Recordings in monkeys [32] 
showed that there is a small attenuation (up to 10%) in EF in-
tensity as stimulation frequency increases. Alekseichuk et al 
[51] combined direct invasive recordings with computational 
models to characterize the dependence of EF magnitude and 
phase on stimulation phase during multi-electrode tACS. Their 
work demonstrated that specific phase configurations can cre-
ate a “traveling wave” stimulation pattern, in which the location 
of maximum EF shifts over time. Subsequently, Lee et al [52] 
used phasor algebra and detailed head models to develop a 
simulation framework for predicting the phase gradient of EFs 
during multi-channel tACS. Their simulations precisely predict-
ed in vivo recordings in monkeys when the return electrode 
was placed within a small radius (< 5 mm) from its actual 
location. They individually calibrated the overestimation in EF 
amplitude through optimization of tissue conductivity, which 
enhanced the correspondence between simulated and mea-
sured field amplitudes. Using validated head models, Opitz et 
al [47] determined the tolerance limits for variation in electrode 
placement, recommending that a placement accuracy of with-
in 1 cm is required for reliable tACS application. In a following 
comparative modeling study involving mice, monkeys, and 
humans [53], the same research group revealed that head size 
is another factor influencing EF strength. Moreover, Ma et al 
[54] identified skull thickness, scalp thickness, and epidural 
cerebrospinal fluid thickness as key anatomical factors that 
contribute to the inter-individual variability of EF intensity. 
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Multi-Compartmental Neuronal Models of 
Cellular Responses to tACS

The oscillatory EF generated by tACS with conventional intensi-
ties (i.e., 1-2 mA) can periodically polarize the transmembrane 
potential. In vitro recordings in rats showed that such polariza-
tion response almost linearly increases with EF strength and 
decreases substantially as field frequency is varied from 10 
Hz to 100 Hz [10]. The mean sensitivity of membrane poten-
tial to applied field exhibits an exponential decay function of 
frequency. However, other in vitro experiments in rats [9, 13] 
and humans [13] reported there is no frequency dependence in 
membrane polarization by weak EFs. Additionally, consistent 
evidence from in vitro studies in rats [9, 10, 12, 13], ferrets [14], 
and humans [13], as well as in vivo recordings in rats [11], fer-
rets [14, 15] and nonhuman primates [16-20] showed that the 
weak EF can alter neural spike timing and cause entrainment. 
Yet, the degree of entrainment is highly variable within and 
across cell types. Some in vivo experiments in humans [23, 24] 
even revealed that the current intensities commonly used may 
not be sufficient to genuinely entrain neural activity. These con-
tradictory findings underscore the necessity of using computa-
tional models to quantify and understand the variable effects 
of tACS on cellular activity.

Multi-Compartmental Neuronal Models
The neural response to tACS is not only determined by the 
induced EF but also depends on cell properties, including bio-
physics, morphology, orientation, and ongoing brain activity. 
Using EF distribution alone is not sufficient to predict all cellu-
lar effects of tACS, which should be coupled to single-neuron 
models. Multi-compartmental models are powerful tools for 
predicting cellular responses to spatially distributed EF. This 
type of model discretizes the complex cell morphology into 
small compartments. Each compartment includes its spe-
cific membrane capacitance, resistance, ionic channel, and 
morphological features (i.e., length and diameter). Adjacent 
compartments are connected by an intracellular (axial) resis-
tance. The membrane potential gradient along the neurites 
generates axial currents flowing between compartments. The 
branch points in the dendrites or axon connect to at least three 
neighboring compartments. The conductance-based models 
introduced by Hodgkin and Huxley [55] provide powerful tools 
for describing the relationship between electrical activity and 
underlying ionic currents in each compartment. According to 
Hodgkin-Huxley (HH) formalism, an ionic current is calculated 
as the product of its conductance and driving force. See refer-
ence [56] for a more comprehensive description of such mod-
els. 
The multi-compartmental conductance-based neuronal mod-
els with realistic morphologies have been developed and 
validated for a wide range of cell types across animal species 
and humans, which are publicly available through repositories 
such as ModelDB, GitHub, and the library of Blue Brain models. 
A common software for simulating compartmental models 
is the NEURON environment [57], which offers a user-friendly 
graphical interface. It also allows users to develop custom 
models, execute simulations, and optimize parameters using 
Python, MATLAB or its specific programming language based 
on hoc.

tACS is modeled by applying the induced EF to each cell 
compartment as its extracellular voltage using NEURON’s 
extracellular mechanism [58-60]. The spatial morphologies 
of multi-compartmental models allow them to effectively de-
scribe the biophysical effects of EF on cell membrane. Since 
large current sources generated by the electrode placed at the 
scalp are distant from underlying cells, the induced EF has a 
low spatial gradient at the scale of individual neurons [61, 62]. 
Thus, when introducing the EF generated by a scalp electrode 
to a neuronal model, the field is often assumed to be uniform, 
i.e., the quasi-uniform assumption [59, 61-63]. 
According to the HH framework, transmembrane potential 
dynamics emerge from the interactions of intrinsic membrane 
properties, which include passive capacitance-resistance 
and voltage-gated ionic conductances [56]. These properties 
collectively govern cellular filtering behaviors over a range of 
stimulation frequencies. When an oscillatory EF is applied, it 
modulates transmembrane voltage by altering the extracel-
lular potential in each neuronal compartment. Such periodic 
perturbations interact with the membrane time constant and 
ion channel kinetics, thereby conferring an inherent frequency 
dependence on cellular response to oscillatory EFs.

Modeling Studies on Membrane Polarization 
Membrane polarization is the subthreshold response of rest-
ing neurons to weak EFs, which significantly depends on cell 
morphology and stimulation frequency. Multi-compartmental 
HH-type models have been used to simulate tACS-induced 
membrane polarization (summarized in Table 1). Under the 
quasi-uniform assumption, these studies directly apply weak 
sinusoidal EFs to isolated neuronal models without synaptic 
input or other external stimuli. 
Computational studies have examined the frequency-depen-
dent polarization response in subcellular elements of neocorti-
cal layer 5 pyramidal cells (L5 PCs), including dendrites, soma, 
and axon. Toloza et al [59] applied weak sinusoidal EFs to a 
multi-compartmental PC model, and field intensity is limited 
to 5 mV/mm peak-to-peak to make sure cellular response is 
subthreshold. They found that the membrane polarization in 
the apical dendrites is opposite to the soma and basal den-
drites. When the apical region is depolarized, the basal region 
is hyperpolarized, and vice versa. Membrane polarization 
depends on field orientation relative to the cell, and the max-
imal polarization occurs when the EF is parallel to the soma-
to-dendritic axis. These simulations are consistent with earlier 
modeling [64] and in vitro [65] results. Membrane response is 
also shaped by EF frequency. The polarization in the apical tuft 
exhibits a frequency resonance at 20 ± 4 Hz, corresponding to 
a band-pass behavior. The polarization in other cell compart-
ments decreases monotonically with increasing stimulation 
frequency, exhibiting a low-pass filter behavior. The hyper-
polarization-activated cation current (Ih) is the primary ionic 
mechanism that leads to the resonance response in distal 
dendrites, and its conductance density controls the resonance 
frequency. Subsequently, Aspart et al [66] used multi-compart-
mental models to quantify the frequency-dependent polariza-
tion profile in the dendrites and soma of a L5b PC to AC fields 
of sinusoidal waveform. They calculated cell sensitivity to AC 
fields by the ratio of polarization amplitude to field amplitude. 
In their simulations, the field sensitivity in apical dendrites 
exhibits a frequency resonance around 10-20 Hz, which is not 
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observed in the soma or basal dendrites. They related these 
differential frequency-dependent polarization profiles to cell 
morphology and active channels. The former increases field 
sensitivity in the apical dendrites, while the presence of high 
density of h-type channels decreases field sensitivity at low 
field frequencies. We recently used two-compartment models 
to analyze the membrane polarization induced by oscillating 
EFs in the frequency domain [67]. We applied linear system 
analysis to compute the transfer functions of the models, 
which were then used to understand the frequency-dependent 
patterns of membrane polarization. We showed that the pres-
ence of Ih introduces a new zero and pole to dendritic transfer 
function, reducing polarization amplitude at low frequencies 
and causing a visible frequency resonance. We also found that 
the compartment geometry, internal coupling conductance, 
and other ionic currents affect the polarization response main-
ly by altering the gain and poles of transfer functions. 
Membrane polarization has also been quantified in different 
types of cells. Tran et al [60] examined somatic polarization in 
L1 neurogliaform cell (NGC), L2/3 PC, L4 large basket cell 
(LBC), L5 PC, and L6 PC using multi-compartmental models 
with oscillatory EFs. They applied polarization length to quanti-
fy cell sensitivity to applied EF, which was computed by somat-
ic polarization per unit field. They showed that there is a linear 
relationship between somatic polarization and EF strength, 
and the mean coefficient of determination R2 is 0.9818 over 
the set of all neurons. L5 PC exhibits the highest polarization 
lengths, followed by L6 PC and L2/3 PC. L1 NGC and L4 LBC 
have lower values than PCs. Recently, we used a set of 
multi-compartmental models to examine the polarization re-
sponse in the subcellular elements of above five cell types to 
sinusoidal EFs [68]. For each cell type, we included five virtual 
clones with random variations in their dendritic and axonal 
morphologies, which were previously validated to replicate cel-
lular responses to weak fields [61]. Our simulations showed 
that membrane polarization varies by cell type and subcellular 
element. The somatic polarization in PCs is sensitive to sinu-
soidal EF that is oriented roughly parallel to the cortical col-
umn, while the polarization sensitivity to field direction for 

Reference Cortical Cell Type Main Results

Toloza et al [59] L5 PC
Ih is the primary ionic mechanism that leads to the resonance response 
to tACS in the apical dendrites.

Aspart et al [66] L5 PC
Cell morphology and Ih contribute to the resonance in the apical den-
drites.

Huang et al [67] PC
Passive membrane properties and Ih underlie frequency-dependent po-
larization by altering the model’s transfer function.

Tran et al [60]
L1 NGC, L2/3 PC, L4 LBC, L5 
PC, L6 PC

L5 PC exhibits the highest polarization lengths, followed by L6 PC and 
L2/3 PC. L1 NGC and L4 LBC have lower values than PCs.

Huang et al [68]
L1 NGC, L2/3 PC, L4 LBC, L5 
PC, L6 PC

Membrane polarization varies by cell type and subcellular element. Axon 
usually exhibits the highest polarization, followed by the dendrites and 
soma.

Gaugain et al [69]
L2/3 PC, L5 PC, L6 PC, VIP in-
terneurons, SST interneurons, 
PV interneurons

Somatic polarization in PCs decreases with frequency, which exhibits 
a resonance in inhibitory neurons. L5 PCs have the highest polarization 
lengths, and SST and PV cells have lower values.

Table 1. Summary of Multi-compartmental Modeling Studies on Membrane Polarization.

non-pyramidal cells varies between clones. Axon usually exhib-
its the highest polarization, followed by the dendrites and 
soma. For PCs, the polarization in the apical dendrites exhibits 
a visible frequency resonance, while the other subcellular ele-
ments primarily exhibit low-pass behavior. These findings are 
consistent with above mentioned studies [59, 66, 67]. The sub-
cellular elements of non-pyramidal cells exhibit complex fre-
quency-dependent polarization profiles. Similarly, Gaugain et al 
[69] found that somatic polarization in PCs is the highest at di-
rect current and decreases exponentially with AC frequency, 
which corresponds to a low-pass filter behavior. The polariza-
tion in inhibitory neurons exhibits a resonance in the 5-15 Hz 
range. L5 PCs have the highest polarization lengths, and so-
matostatin and parvalbumin cells have lower values. 

Modeling Studies on Entrainment of Spiking Activity 
The subthreshold membrane polarization by tACS can alter 
spike timing and entrain neural activity. The multi-compart-
mental HH-type models have also been used to examine these 
effects on ongoing firing activity (summarized in Table 2). In 
this scenario, the synaptic inputs are applied to multi-com-
partmental models to generate spontaneous firing. The neural 
entrainment is commonly quantified by phase locking value 
(PLV), which measures spike timing synchronization relative to 
tACS waveform [60, 69]. The minimum PLV is 0, which means 
the spike timings are uniformly distributed over all phases. The 
maximum value is 1, which means the spike timing is perfectly 
synchronized to a specific phase of tACS. 
Computational studies have investigated spike entrainment by 
tACS in different types of cortical cells. In these studies, tACS 
was modeled by directly applying a spatially uniform EF with 
sinusoidal waveform to an isolated multi-compartmental mod-
el. Using this method, Tran et al [60] systematically examined 
the effects of tACS on firing activity in L1 NGC, L2/3 PC, L4 
LBC, L5 PC, and L6 PC. To generate spontaneous firing activity, 
an excitatory synaptic input was added to each cell at a ran-
dom location on the apical dendrite for PCs or the basal den-
drite for interneurons. A stochastic Poisson process was used 
to model the presynaptic input. The synaptic conductance 

A
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was modeled using a two-exponential function. They found 
that sine-wave EF does not alter the firing rate of cortical cells 
when field intensity is in the range of human experiments (i.e., 
< 1 V/m). However, such weak fields can entrain the spiking 
activity in L5 PC and L4 LBC. L2/3 and L6 PCs exhibit weaker 
entrainment than L5 PC and L4 LBC, and no entrainment is ob-
served in L1 NGC. The cell-type-specific entrainment is related 
to neuronal morphology and cell biophysics. Recently, Gaugain 
et al [69] found that the phase entrainment of cortical cells is 
dependent on EF intensity and frequency. In their simulations, 
the presynaptic spike train was also generated by a stochastic 
Poisson distribution. The multiple synapses and their param-
eters were determined to generate reproducible firing activity 
with a mean rate at 10 Hz in each cell. They showed that there 
is a linear increase in entrainment to tACS frequency with EF 
intensity. When EF intensity is 10 V/m, L5 PCs exhibit the high-
est entrainment at their intrinsic firing frequency, which decays 
with stimulus frequency. The entrainment in inhibitory neurons 
increases with frequency. They also developed three-compart-
ment PC model and single-compartment inhibitory neuron 
model to replicate above simulations. These simplified models 
can be used for faster computation of network-level dynamics 
with tACS. 
To mechanistically understand the morphology-dependent 
effects of tACS, several studies [70, 71] employed inte-
grate-and-fire (IF) models to approximate neural activity gener-
ated in a biophysically more sophisticated ball-and-stick (BS) 
model. The BS model consists of a lumped somatic compart-
ment attached to a passive dendritic cable with a specified 
length. The IF model provides a simple phenomenological 
description of spike generation while retaining biologically 
plausibility of HH-type dynamics [72]. In IF models, a spike is 
generated when membrane potential exceeds a predefined 
threshold. Aspart et al [70] developed extended IF models to 
reflect the morphology-dependent EF effects extracted from 
a BS model. The in vivo like noisy synaptic inputs were used 
to generate spontaneous spiking, which were modeled as 
Ornstein-Uhlenbeck processes. They found that an oscillatory 
EF causes spike rate resonance and the resonance frequency 
depends on synaptic input location, which is related to the 
dendritic filter of synaptic inputs. With the similar technique, 
Ladenbauer and Obermayer [71] analytically determined the 
parameters of a two-compartment model to reproduce so-
matic voltage dynamics in a BS model. The IF formalism was 
used to model the spike dynamics in each compartment. They 
found that the oscillatory EF (1 V/m) causes a clear resonance 
in spike rate when its frequency is in the beta and low gamma 
bands. They further showed that the weak field effectively re-
flects anti-correlated inputs at the soma and dendrite, which 
modulate firing activity and lead to spike rate resonance. Using 
the two-compartment models described above, we recently in-
vestigated the effects of oscillatory EFs on spike train correla-
tions between pairs of unconnected neurons driven by shared 
fluctuating dendritic inputs [73]. We observed that output cor-
relation increases with EF intensity while exhibits resonance at 
specific field frequencies. This correlation resonance is influ-
enced by the morphological differences between the somatic 
and dendritic compartments, with increased structural asym-
metry resulting in more pronounced resonant behavior. These 
findings were further validated using morphologically detailed 
PC models.

An isolated multi-compartmental model cannot account for all 
cellular effects of tACS, and it is necessary to examine cellular 
responses to stimulation in a neuronal network with synaptic 
connections. Multi-compartmental models incorporate numer-
ous variables, parameters, and nonlinearities. Incorporating 
these models into networks with synaptic connections to 
simulate cellular responses thus significantly increases com-
putational cost. For this reason, simpler neuronal models are 
often appropriate for network-scale simulations of tACS. The 
relevant HH-type model usually includes two compartments, 
which is the minimal individual neuronal unit to capture the 
spatial polarization by EFs [71, 73, 74]. One compartment 
represents the apical dendrite, and the other compartment is 
the soma. Particularly, they are still computationally efficient 
when simulating network dynamics. The method for coupling 
EF to a two-compartment model is the same as that used in 
multi-compartmental models. With the network of two-com-
partmental models, Zhao et al [75] found that low intensity 
tACS (< 0.3 V/m) desynchronizes neural firing relative to ongo-
ing endogenous oscillations, while higher intensity stimulation 
(> 0.3 V/m) directly entrains neural firing. These are consistent 
with experimental recordings in the nonhuman primate brain 
[20]. Compared to isolated single cells, tACS-induced entrain-
ment is amplified by synaptic coupling and network effects. 
Their simulations also revealed that oscillatory EFs directly 
entrain pyramidal cell and then drive the interneurons. Note 
that the two-compartment models do not include realistic cell 
morphology, which is an important factor that may lead to 
variability in single neuron responses to tACS [60, 66, 70]. Im-
portantly, such simplified models are unable to simulate mem-
brane polarization in dendritic and axonal terminals as well as 
their arbors, and thus neglect tACS effects on presynaptic and 
postsynaptic compartments [61]. All these factors can affect 
their predictions on input-output properties in single neurons 
and further alter network-level activity. Simulation of tACS 
effects on large-scale networks with morphologically detailed 
neuronal models can be executed on the supercomputers [61, 
76]. Further, there were studies using networks of phenomeno-
logical models (such as, Izhikevich or IF models) to simulate 
the entrainment of cortical oscillations by tACS, which were 
reviewed in reference [27] and not covered here.
Above studies use a uniform EF to describe tACS, which do 
not consider the anatomical distribution of EFs. Wischnews-
ki et al [19] integrated multi-compartmental models of L5 
thick-tufted PCs with a realistic head model to simulate tACS 
effects on spiking activities. Alternating currents were applied 
to the scalp anterior and posterior of motor cortex through two 
electrodes. The head model predicts that the EF is strongest 
at crown of the precentral gyrus, which is 0.31 mV/mm and 
decreases with depth into the sulcus. Such EF significantly 
entrains L5 PCs without altering firing rates. The neural en-
trainment by tACS depends on the orientation of cortical cells. 
Since the locations of PCs in anterior and posterior wall of 
the precentral gyrus are along electric current direction, they 
are more entrained than those at the crown and the bottom 
of the sulcus. Further, the anterior wall and posterior wall are 
entrained at different phases. Wischnewski et al [19] also de-
veloped a simplified microcircuit model with two PCs and one 
interneuron, and each neuron was described by a two-compart-
ment model consisting of a soma and a dendrite. Combined 
with the realistic head model, they replicated the phase shifts 
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Reference Neuronal Model tACS Model Main Results

Tran et al [60]
isolated multi-compart-
mental model with realistic 
morphology

uniformly distributed 
sinusoidal EF

Weak fields (< 1 V/m) entrain spiking activity in L5 PC 
and L4 LBC. L2/3 and L6 PCs exhibit weaker entrain-
ment than L5 PC and L4 LBC, and no entrainment is 
observed in L1 NGC. Cell-type-specific entrainment is 
related to neuronal morphology and biophysics.

Gaugain et al [69]
isolated multi-compart-
mental model with realistic 
morphology

uniformly distributed 
sinusoidal EF

Phase entrainment depends on EF intensity and fre-
quency. L5 PCs exhibit the highest entrainment at 10 
Hz when field intensity is 10 V/m, which decays with 
stimulus frequency. The entrainment in inhibitory cells 
increases with frequency.

Aspart et al [70]
extended IF model devel-
oped based on a BS model

uniformly distributed 
sinusoidal EF

An oscillatory EF causes spike rate resonance and the 
resonance frequency depends on synaptic input loca-
tion, which is related to the dendritic filter for synaptic 
inputs.

Ladenbauer and 
Obermayer [71]

two-compartment IF model 
developed based on a BS 
model

uniformly distributed 
sinusoidal EF

An oscillatory EF (1 V/m) effectively reflects anti-cor-
related inputs at the soma and dendrite, which modu-
late firing activity and lead to spike rate resonance.

Huang et al [73]
two-compartment IF model 
developed based on a BS 
model

uniformly distributed 
sinusoidal EF

Spike train correlation increases with EF intensity 
while exhibits resonance at specific field frequen-
cies. This correlation resonance is influenced by the 
morphological differences between the somatic and 
dendritic compartments.

Zhao et al [75]

cortical network consisting 
of 800 PCs and 200 inter-
neurons, and each neuron 
is described by a two-com-
partment HH-type model

uniformly distributed 
sinusoidal EF

Low intensity EF (< 0.3 V/m) desynchronizes neural 
firing relative to ongoing endogenous oscillations, 
while higher intensity field (> 0.3 V/m) directly entrains 
neural firing. tACS-induced entrainment is amplified by 
synaptic coupling and network effects. The oscillatory 
EFs directly entrain PCs and then drive the interneu-
rons.

Wischnewski et al 
[19]

isolated multi-compart-
mental model with realistic 
morphology

EFs calculated in a 
realistic head model 

EF entrains L5 PCs without altering firing rates, which 
depends on the orientation of cortical cells. The PCs 
in anterior and posterior wall of the precentral gyrus 
are more entrained than those at the crown and the 
bottom of the sulcus.  

Wischnewski et al 
[19]

a microcircuit with two PCs 
and one interneuron, and 
each neuron is described 
by a two-compartment HH-
type model 

EFs calculated in a 
realistic head model 

NMDA-mediated synaptic plasticity is a factor that 
drives the phase shifts over time observed in experi-
mental recordings.

Huang et al [77]
isolated multi-compart-
mental model with realistic 
morphology

EFs calculated in a 
realistic head model

EF heterogeneity and cell morphology are factors that 
contribute to diverse entrainments. The quasi-uniform 
assumption used for modeling tACS effects on spike 
entrainment is validated.

Table 2. Summary of Multi-compartmental Modeling Studies on Entrainment of Spiking Activity.A

over time observed in experimental recordings, suggesting 
that N-methyl-D-aspartate (NMDA)-mediated synaptic plastici-
ty is a factor that drives above phase precession. We recently 
used multiscale modeling to examine how L5 PCs in primary 
motor cortex respond to conventional M1-SO tACS [77]. The 
simulations of an anatomically accurate head model showed 
that the induced EFs distribute heterogeneously across the L5 
surface of interest. By calculating PLV and preferred phase of 

morphologically realistic neuronal models, we found that the 
direction and intensity of heterogeneous EF and cell morphol-
ogy are factors that contribute to the diverse entrainments. 
Our simulations also validated the quasi-uniform assumption 
used for modeling tACS effects on spike entrainment. The 
synaptic inputs in above two studies are modeled using a 
similar approach to Tran et al [60]. Note that such multiscale 
models were also applied to quantify the axonal and dendritic 
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polarization by transcranial direct current stimulation [61] and 
cortical neuron activation by transcranial magnetic stimulation 
[78]. These studies collectively indicate that the multiscale 
modeling is a promising approach for understanding cellular 
response to noninvasive brain stimulation.

Conclusions 

tACS offers a noninvasive means to probe and modulate neu-
ral oscillations, yet fundamental questions remain about its 
ability to entrain neuronal activity at conventionally applied 
intensities. Multiscale computational models provide a critical 
framework for resolving these controversies by linking mac-
roscopic EF distributions to cell-type-specific polarization and 
spike entrainment. Realistic head models have clarified how 
anatomy, tissue conductivity, stimulation parameters, and elec-
trode montage shape field strength, while multi-compartmen-
tal neuronal models have demonstrated how cell morphology, 
ionic currents, and synaptic inputs govern cellular responsive-
ness. 
Data-driven methods have been applied to develop multi-
scale models to reproduce and integrate experimental data. 
Markram et al [76] used a multi-objective optimization to con-
strain the vector of ion channel conductance densities in neo-
cortical microcircuitry to reproduce recorded spike features. 
Dura-Bernal et al [79] applied a hyperparameter optimization 
framework to tune synaptic weights in auditory thalamocorti-
cal circuits to produce physiological firing rates. The resulting 
data-driven multiscale models were used to interpret the cel-
lular and circuit mechanisms underlying experimental obser-
vations. Therefore, the data-driven integration of multiscale 
models with experimental recordings across species and 
human neuroimaging will be essential for identifying cell- and 
region-specific mechanisms of tACS, reconciling translational 
differences, and capturing excitatory-inhibitory network inter-
actions. 
Further, the convolutional neural networks were previously 
used to rapidly predict EF distribution in brain tissues [80- 
81] and activation threshold in cortical cells [82] during tran-
scranial magnetic stimulation. The temporal convolutional 
networks were applied to predict the subthreshold dynamics 
and spike timing in L5 PCs with synaptic inputs [83]. The hi-
erarchical convolutional neural networks were used to model 
neural single-unit and population responses in higher visual 
cortical areas [84]. These studies suggest that artificial neu-
ral networks could be introduced to assist in multiscale tACS 
modeling and bridge the data at different scales. By advancing 
toward individualized, validated, and clinically informed model-
ing frameworks, potentially enhanced by artificial intelligence 
technologies, future work can transform tACS from a variable 
experimental tool into a precise neuromodulation strategy with 
robust therapeutic applications.
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