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Abstract

Background: Allostatic load, defined as the cumulative strain resulting from the chronic stress response, is associated with adverse health 
outcomes. Heavy metals, prevalent in various environmental pollutants, exert cumulative effects on the human body through exposure via water 
or food sources. However, the relationship between heavy metals and allostatic load remains poorly understood. The aim of this study is to 
examine the association between urinary metal concentrations and allostatic load.
Methods: This study analyzed data from 4,231 adult participants in the National Health and Nutrition Examination Survey (NHANES) conducted 
between 2005 and 2010. We employed linear regression analysis, Bayesian kernel machine regression (BKMR), weighted quantile sum (WQS), 
and quantile g-computation (qgcomp) to investigate the associations between twelve urinary metals and allostatic load. Additionally, we 
developed K-nearest neighbors (KNN), random forest (RF), and XGBoost models to predict allostatic load scores (ALS).
Results: Linear regression analysis indicated that the combined effects of the twelve urinary metals were negatively correlated with allostatic 
load. WQS, qgcomp, and BKMR analyses identified cesium (Cs), molybdenum (Mo), lead (Pb), platinum (Pt), and cobalt (Co) as the primary 
influencing factors (all p-values < 0.05). Furthermore, when predicting ALS based on heavy metal exposure, the random forest model 
outperformed the other machine learning algorithms, with a root mean square error (RMSE) of 2.377428, compared to 2.501523 for KNN and 
2.377733 for XGBoost.
Conclusion: Our findings indicate that urinary metal concentrations are negatively associated with allostatic load, with Cs, Mo, Pt, Pb, and 
Co showing the most significant negative correlations. Further research is necessary to explore the causal relationships and underlying 
mechanisms. Additionally, our analysis demonstrated that the random forest model was the most effective for ALS prediction.
Keywords: Urinary metals; Allostatic load score; National health and nutrition examination survey; Machine Learning.
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Introduction

The concept of allostatic load which McEwen and Stellar[1]
proposed in an effort to elucidate the process in which various 
body systems adapt and fluctuate to meet the demands of 
stress reflects the biological burden of chronic exposure to 
the downstream effects of various stress-response pathways 
arising from repeated environmental and physiological 
challenges[2]. Previous studies have shown that individuals 
with high AL compared with those with low AL had an 
increased mortality risk of 22% for all-cause and 31% for 
CVD mortality[3]. Prior reports also suggested that increased 
AL disrupt the nervous system and the stress response 
axis resulting in the disturbance of immune, cardiovascular, 
metabolic,  and neuroendocrine systems, and fur ther 
increasing cancer risk [4] [2, 5],even death [6]. In addition to 
some known potential risk factors such as health-damaging 
behaviors, there may be some risk factors. Identifying potential 
risk factors for allostatic load is important for understanding 
how these factors are associated with physiology as well as 

health and aging outcomes. Allostatic load can be quantified 
by the allostatic load score, an established measure of the 
cardiovascular, metabolic, and immune ramifications of stress, 
which was found to be a good predictor of mortality and 
decline in physical functioning [7] [8] [9].
Heavy metals are commonly defined as metallic elements 
with a density of ≥ 5 g/cm³. Lead (Pb), cadmium (Cd), 
mercury (Hg), selenium (Se), and manganese (Mn) are widely 
distributed environmental pollutants. Humans are commonly 
exposed to heavy metals through various sources such as air 
pollution, domestic effluents, cosmetic products, and food 
consumption[10]. Growing evidence indicates that heavy 
metals exert toxicity to individuals by interfering with immune 
homeostasis and promoting inflammation [4].We have known 
that physical stressors such as traumatic, infectious, and 
inflammatory exposures, as well as psychosocial stressors 
may each lead to frequent activation of allostatic systems, 
which may lead to high allostatic load [11].We surmise that 
exposure to mixture of heavy metals can be associated to high 
allostatic load.
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The study of heavy metal exposure and allostatic load will 
help us to think about the multilevel physiological regulation 
and pathological response. At the level of antioxidant and 
detoxification systems, heavy metals (such as Hg and Cd) 
can alleviate oxidative damage by inducing the expression 
of metallothionein, glutathione (GSH) and antioxidant 
enzymes (catalase, superoxide dismutase) [12]. For example, 
the lungs of rats exposed to mercury vapor locally adapt 
by upregulating metallothionein and glutathione, while the 
kidneys and brain are more vulnerable due to metabolic 
differences[12]. Cadmium exposure alleviates kidney injury by 
activating autophagy related genes (Beclin1, LC3), but inhibits 
the expression of bone formation genes (Osterix, RUNX2), 
which may lead to osteoporosis risk[13]. However, there are 
significant differences in detoxification thresholds among 
different organs, suggesting the need to establish organ-
specific exposure limits.
At the same time, long-term low-dose exposure can trigger 
immune regulatory imbalance, which is manifested by the 
activation of pro-inflammatory factors (TNF-α, IL-2) pathways 
and the coexistence of immunosuppressive mechanisms, and 
this dual effect may increase susceptibility to infection or the 
risk of autoimmune diseases[13]. 
Meanwhile, the study of the relationship between heavy 
metals and adaptive load has far-reaching significance for 
the multidimensional strategy of public health intervention, 
such as the establishment of a biomarker early warning 
system integrating antioxidant indicators (catalase activity), 
detoxifying proteins (metallothiosin) and genetic damage 
markers, [12, 14] and further combining regional pollution 
characteristics to develop differentiated management policies.
In this study, we employed data from the National Health 
and Nutrition Health and Nutrition Examination Survey 
(NHANES) in the United States to assess the relationship 
between allostatic load and the levels of 12 metals—barium 
(Ba), Beryllium(Be),cadmium (Cd), cobalt (Co), cesium 
(Cs), molybdenum (Mo), lead (Pb), antimony (Sb), thallium 
(Tl),platinum(Pt), tungsten (W), and uranium (U)—and their 
mixture in urine. We employed several statistical models, 
including multiple logistic regression, weighted quantile sum 
regression (WQS), Bayesian kernel machine regression (BKMR), 
to conduct our evaluation. Our findings yield epidemiological 
evidence for future research on the relationship between 
combined heavy metals exposure and allostatic load. And we 
found three ML models that could be used to identify ALS by 
heavy metals' exposure and then compared the performance 
characteristics of our models.

Methods

Study population
This cross-sectional study used data from 3 cycles in the 
NHANES website (https://www.cdc.gov/nchs/nhanes/index.
htm), which was is a nationally representative study conducted 
by the National Center of Health Statistics comprising 
interviews as well as physical and medical examinations. 
Participants of the NHANES during the 2005 to 2010 cycles 
were included. Within these cycles, Measurement of urinary 
metals levels and all serum measurements included within our 
ALS calculations were completed. Measurements of C-reactive 

protein levels were not available in NHANES cycles after 2010. 
After excluding participants under 20 years old, with missing 
measurements included within our ALS calculations, those 
with missing urinary heavy metals level variables and those 
with missing other covariates data, 4231 participants were 
incorporated into the study, as illustrated in Figure 1.

Figure 1. Flow chart of the study population. 

Metal measurements
The NHANES cycles between 2005 and 2010 measured the 
concentrations of 12 metals in urine, including Ba, Be, Cd, 
Co, Cs, Pt, Mo, Pb, Sb, Tl, W, and U. Methods for determining 
these metal  concentrat ions are documented on the 
NHANES laboratory methods webpage. Natural logarithm 
(In) transformations were performed for 12 metal variables 
to maintain a normal distribution for subsequent analyses. 
Values below the limit of detection (LOD) are not discarded 
in order to maintain data integrity.Meanwhile, to account 
for urine dilution, all metal concentrations were adjusted for 
creatinine concentration, with the corrected unit measured in 
μg/g creatinine.

Allostatic Load Score
The biomarkers were the most commonly used in prior studies 
evaluating ALS and represent certain functional organ systems 
[7]. For the cardiovascular system, systolic and diastolic 
blood pressure and total serum cholesterol and high-density 
lipoprotein (HDL) cholesterol levels were included. For the 
metabolic system, levels of glycohemoglobin (hemoglobin 
A1c) and albumin and body mass index (calculated as 
weight in kilograms divided by height in meters squared) 
were included. Lastly, for the immune system, levels of 
C-reactive protein were included. As a primary analysis, based 
on guidance from Duong [7], ALS was calculated by turning 
each biomarker into a dichotomous variable based on the 
statistical distribution of the sample (quartiles). One point 
was given if the biomarker was in the high-risk range (highest 
quartile) and if not (lowest 3 quartiles) with the exception of 
albumin and HDL cholesterol levels. For these 2 variables, a 
lower score indicated higher risk; thus, 1 point was given for 
being in the lowest quartile. In the sensitivity analysis, we also 
categorized each biomarker based on clinical cut points, with 
1 point given if the biomarker was in the high-risk range. [15] 
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[16] [6] Individual biomarker thresholds for clinical cut point 
ALS determination are listed in Table 1. Overall, possible ALS 
ranged between 0 and 8, and the higher the ALS, the greater 
the association of stress with physiologic dysregulation.

Covariates
From within the NHANES interview assessments, we included 
several covariates, including age (continuous in years), sex 
(male and female), race and ethnicity (non-Hispanic Black, 
non-Hispanic White, other Hispanic, and other race [including 
multiracial]), education (less than high school, high school 
graduate or equivalent, some college education, or college 
graduate and greater), marital status (married or living with 
a partner or other, including widowed, divorced, separated, or 
never married). Smoking status was defined based on 2 self-
reported questions: (1) “smoked at least 100 cigarettes in life” 
and (2) “Do you now smoke cigarettes?” Participants were 
categorized as non-smoker (answer of “no” to question 1), 
former smoker (answer of “yes” to question 1 but “not at all” to 
question 2), or current smoker (answer of “yes” to question 1 
and “every day” or “some days” question 2). 

Statistical analyses
The statistical software R (version 4.3.3) was utilized for 
the aforementioned analysis, with all significance levels set 
at P < 0.05 (two-tailed). Continuous or categorical variables 
were presented as medians and standard deviation (SD), or 
numerical and frequency distribution. Prior to any analysis, 
a logarithmic transformation of metals content in urine was 
performed.
We conducted weighted linear regression model to evaluate 
the relationship between urinary metals and allostatic load 
score. In this model, age, gender, education level, race, marital 
status, and smoking was adjusted. The results of p values 
were expressed.

Weighted quantile sum (WQS) and Quantile g-computation 
(qgcomp)
To examine the combined impacts using parametric inference, 
the qgcomp and WQS approach can be employed. WQS is a 
statistical technique used for analyzing high-dimensional data 
sets through multiple regression. [17] we conducted WQS 
analysis to assess the combined and individual impacts of 
heavy metals mixtures on allostatic load score by calculating 
a weighted linear index and assigning corresponding weights. 
In this study, we used bootstrapping with 1,000 iterations 
to construct WQS indexes in both positive and negative 
directions. When the WQS index was significant, corresponding 
weights were examined to identify the relative contribution 
of each heavy metal within the index to the prevalence of 
sarcopenia. The dataset was randomly divided, with 40% of 
the data allocated to the training set and the remaining 60% 
served as the validation set.
Qgcomp integrates the inferential framework of WQS 
regression with the flexibility of g-computation, addressing 
issues related to directional homogeneity and allowing for 
nonlinearity and no additivity in BKMR, thereby yielding more 
robust results [18]. In this study, we utilized the qgcomp model 
to evaluate the joint effect of exposure to a mixture of urinary 
metals on ALS and present both positive and negative weights 
for each metal in the urinary metals mixture.

Bayesian kernel machine regression (BKMR)
BKMR possesses the capacity to assess the impact of a 
combination of pollutants on health, as well as to estimate 
total exposure, individual exposure effects, and chemical 
interactions [19] [20]. In this study, we conducted a comparison 
of metals levels in urine samples collected at various 
percentiles and at the median in order to evaluate their overall 
influence on Allostatic Load Score. Additionally, we examined 
the specific effect of individual metals content in urine when 
other metals content is held constant at different percentiles. 
Furthermore, we explored the relationship between metals 
exposure and Allostatic Load Score, including any nonlinear 
associations. Lastly, Spearman correlation coefficients were 
computed to assess correlations between metals.

Machine learning component and performance evaluation
we compared the eight different machine learning algorithms 
including Extreme Gradient Boosting (XGBoost), Random 
Forest (RF) ,  and K-Nearest Neighbors (KNN).  In the 
comparison of the three algorithms, RF was the best choice.
RF which Breiman proposed [21] is one of the most widely 
used machine learning techniques. The essence of the RF 
algorithm is an improvement of the decision tree algorithm, 
and it can handle a large number of input variables. It has 
relatively high accuracy, robustness, and user-friendly nature. 
Two simple approaches for selecting features include mean 
decrease impurity and mean decrease accuracy [22] [23]. In 
addition, RF can be used to predict continuous variables and 
obtain predictions without obvious deviations. [24] [25]
With the test dataset, model performance was evaluated by 
the root-mean-square error (RMSE) expressed as

RMSE is the variance of the difference data to measure the 
“average error.”

Result

Participant characteristics
A total of 4231 participants from the NHANES study 
conducted between 2005 and 2010 were included. Medians 
and interquartile ranges (IQR) were calculated for the level 
of allostatic load score. Table 1 presents their baseline 
characteristics. Significant differences(P<0.05) were 
observed between the groups with different allostatic load 
score in terms of age, gender, race/ethnicity, education level, 
marital status, and smoking status. Furthermore, substantial 
differences were found in the urinary concentrations (μg/g 
creatinine) of heavy metals such as Be, Cd, Co, Cs, Mo, Pt, and 
Tl.

Heavy metals exposure and allostatic load score in the 
multivariate linear regression
To assess the potential link between log10-transformed 
heavy metals concentrations and the allostatic load score, 
we employed multivariate linear regression model which was 
showed in Table 2. It is worth noting that exp(Beta) means 
when X goes up by 1, the expected value of Y changes by 
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 **ALSscorequartiles** 

Characteristic Overall,
N = 4231(100%) 1

Q1,
N = 1429(39%) 1

Q2,
N = 900(21%) 1

Q3,
N = 1404(30%) 1

Q4,
N = 498(9.5%) 1 p-value 2

Age 46.00±16.37 39.00±15.55 46.00±16.03 51.00±16.08 53.00±14.09 <0.001

Gender 0.7

1 2,122(49%) 707(48%) 454(50%) 713(51%) 248(49%)

2 2,109(51%) 722(52%) 446(50%) 691(49%) 250(51%)

Race <0.001

1 794(8.6%) 262(8.2%) 177(9.1%) 260(8.6%) 95(9.3%)

2 381(4.5%) 124(4.1%) 85(5.4%) 118(3.9%) 54(6.1%)

3 2,113(72%) 787(75%) 434(70%) 690(72%) 202(64%)

4 774(10%) 184(6.9%) 162(9.9%) 292(12%) 136(18%)

5 169(5.0%) 72(6.2%) 42(5.5%) 44(3.8%) 11(3.3%)

Education level <0.001

1 542(6.8%) 127(4.6%) 125(7.5%) 203(8.0%) 87(11%)

2 709(13%) 209(11%) 144(13%) 244(13%) 112(19%)

3 979(24%) 320(22%) 210(24%) 342(27%) 107(23%)

4 1,175(30%) 392(29%) 245(29%) 398(32%) 140(33%)

5 826(26%) 381(34%) 176(27%) 217(20%) 52(14%)

DMDMARTL <0.001

1 2,302(58%) 753(54%) 498(60%) 799(62%) 252(56%)

2 345(5.5%) 54(2.8%) 81(5.7%) 148(7.9%) 62(8.7%)

3 425(10%) 132(9.6%) 71(8.7%) 153(11%) 69(15%)

4 147(2.5%) 47(2.7%) 35(2.9%) 47(2.1%) 18(1.8%)

5 656(16%) 305(21%) 125(13%) 167(11%) 59(13%)

6 356(8.7%) 138(10%) 90(10%) 90(6.6%) 38(6.0%)

Smoking status 0.014

1 922(23%) 348(25%) 186(23%) 257(18%) 131(27%)

2 1,102(26%) 322(23%) 229(26%) 417(30%) 134(28%)

3 2,207(51%) 759(52%) 485(52%) 730(52%) 233(45%)

Ba -1.83±0.39 -1.82±0.38 -1.83±0.37 -1.86±0.40 -1.84±0.42 0.3

Be -3.32±0.33 -3.30±0.34 -3.31±0.34 -3.35±0.31 -3.37±0.27 <0.001

Cd -2.63±0.37 -2.69±0.37 -2.60±0.37 -2.60±0.36 -2.56±0.36 <0.001

Co -2.47±0.29 -2.47±0.28 -2.45±0.29 -2.49±0.30 -2.50±0.27 0.034

Cs -1.35±0.21 -1.35±0.21 -1.34±0.22 -1.36±0.21 -1.38±0.19 0.006

Mo -0.38±0.28 -0.36±0.26 -0.38±0.29 -0.41±0.29 -0.38±0.27 <0.001

Pb -2.28±0.29 -2.31±0.28 -2.26±0.31 -2.27±0.30 -2.27±0.28 0.10

Table1. Baseline characteristics of participantsA
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Pt -4.22±0.39 -4.19±0.39 -4.19±0.38 -4.25±0.40 -4.27±0.43 <0.001

Sb -3.24±0.29 -3.23±0.30 -3.23±0.30 -3.24±0.28 -3.24±0.29 0.4

Tl -2.83±0.22 -2.81±0.22 -2.82±0.23 -2.85±0.22 -2.88±0.19 <0.001

W -3.12±0.36 -3.11±0.36 -3.09±0.38 -3.13±0.35 -3.12±0.36 0.4

U -4.22±0.38 -4.23±0.38 -4.22±0.39 -4.23±0.39 -4.18±0.38 0.13

1 median (SD) for continuous; n(%) for categorical.
2 Wilcoxon rank-sum test for complex survey samples; chi-squared test with Rao & Scott's second-order correction

about e exp(Beta). From the positive and negative values of 
exp(Beta) we can see the relationship between X and Y very 
well. Comparing with model l, there was a higher correlation 
between metals and allostatic load score after adjusting 
other heavy metals. It indicates that there may be interaction 
or a possible co-exposure pattern between mixed heavy 
metals. Meanwhile, After controlling for all confounders, the 
association between Be, Cd, Co, Cs, Mo, Pb, Pt, Sb and Tl and 
allostatic load score showed significance in multivariate linear 
regression(P<0.05), and were positively correlated with ALS. 
In the adjusted model, the risk of high allostatic load score 
decreased by 33.28% (exp (Beta): -1.1; 95% CI: -1.4, -0.77) for 
one-unit decrease in Cs concentration.

Heavy metals exposure and allostatic load score in WQS and 
qgcomp model
Both the WQS and qgcomp models were employed to 
estimate the weights of each metal in the mixture's overall 
effect. The interpretation of the results of the WQS model 

Crude model Adjusted model  I Adjusted model II

exp(Beta) 95%CI p-value exp(Beta) 95%CI p-value exp(Beta) 95%CI p-value

Ba 1.07 0.88,1.29 0.478 1.22 1.02,1.46 0.026 -0.11 -0.27, 0.04 0.148

Be 0.76 0.58,0.99 0.038 0.77 0.59,1.02 0.058 -0.66 -0.83,-0.49 <0.001

Cd 1.92 1.50,2.46 <0.001 0.92 0.72,1.18 0.498 -0.31 -0.57, -0.06 0.013

Co 0.84 0.66,1.06 0.127 0.8 0.62,1.04 0.082 -0.51 -0.71, -0.31 <0.001

Cs 0.8 0.53,1.22 0.292 0.58 0.39,0.86 0.005 -1.1 -1.4, -0.77 <0.001

Mo 0.78 0.62,1.00 0.041 0.69 0.55,0.88 0.002 -0.56 -0.76, -0.35 <0.001

Pb 1.23 0.98,1.53 0.059 0.71 0.57,0.88 0.001 -0.63 -0.85, -0.42 <0.001

Pt 0.93 0.70,1.24 0.607 0.85 0.64,1.14 0.264 -0.51 -0.71, -0.31 <0.001

Sb 0.89 0.71,1.13 0.326 1 0.78,1.27 0.964 -0.31 -0.53, -0.09 0.005

Tl 0.54 0.37,0.79 <0.001 0.87 0.61,1.23 0.408 -0.84 -1.1, -0.56 <0.001

W 0.97 0.77,1.21 0.761 1.04 0.86,1.26 0.678 -0.16 -0.33, 0.02 0.065

U 1.02 0.85,1.22 0.833 1.01 0.86,1.18 0.886 -0.12 -0.28, 0.03 0.11

Table 2. Multivariate linear regression analysis of Log10-transformed heavy metals for allostatic load score.The crude model did not adjust for 
any covariates. Adjusted model I was adjusted for all covariates. Adjusted model II was adjusted for all covariates and other heavy metals.

is based on the weighted quantile and (WQS) regression 
coefficients, reflecting the overall effect of the mixed 
exposure. The weights represent the relative contributions 
of each component in the mixed exposure and are used to 
identify the most important component in the mixed exposure 
(through the weight magnitude).We applied the WQS model 
to examine the association between the combined effects 
of the twelve heavy metals and the allostatic load score. The 
WQS index of the urinary metals was negatively associated 
with ALS in total.(Estimate: -0.386; P< 0.001) Figure 2A and 
Table 3 presented that Pb received the highest weight 0.181 
for allostatic load score, followed by weight 0.177 for Cs, 
weight 0.145 for Mo, weight 0.125 for Pt, weight 0.7180 for Co, 
and in the negative direction after adjusting for all covariates. 
The WQS regression in the positive direction did not show 
any significant association of the heavy metals mixtures with 
allostatic load score. It is important to note that the WQS 
model cannot account for the effect of the direction of action 
of each component in the mixed exposure on the population. 

A
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So we then use the qgomp model, whose results are 
interpreted based on the overall effect of the mixed exposure, 
allowing different components to have different effects in 
different directions, and can be used to assess the net effect 
of the mixed exposure (taking into account both positive 

and negative effects). The qgcomp model results further 
substantiated this finding, determining that the influence of 
these four heavy metals on the overall effect was negative. 
(Figure 2B) 

Figure 2. WQS and qgcomp models. (A)WQS weights in the WQS regression model between ALS and WQS index of heavy metal mixtures. (B) 
Qgcomp model regression index weights for urinary heavy metals and ALS. The model adjusted for all covariates. Ba, Barium; Be, Beryllium; Cd, 
Cadmium; Co, Cobalt; Cs, Cesium; Mo, Molybdenum; Pb, lead; Pt, Platinum; Sb, Antimony; Tl, Thallium; W, Tungsten; U, Uranium.

Mix name mean weight
Pb 0.18100
Cs 0.17700
Mo 0.14500
Pt 0.12500
Be 0.07990
Co 0.07180
Tl 0.05760
Sb 0.05690
Cd 0.05520
W 0.03460
U 0.00922

Ba 0.00703

Table. 3. WQS weights in the WQS regression model between ALS 
and WQS index of heavy metal mixtures. The model adjusted for all 
covariates. Ba, Barium; Be, Beryllium; Cd, Cadmium; Co, Cobalt; Cs, 
Cesium; Mo, Molybdenum; Pb, lead; Pt, Platinum; Sb, Antimony; Tl, 
Thallium; Tu, Tungsten; Ur, Uranium.

Heavy Metal Correlations in the Spearman correlation matrix
Figure 3 is a heatmap showing the correlations among the 12 
heavy metals using a Spearman correlation matrix. A complex 
exposure profile was observed among metal concentrations, 
with pairwise Spearman correlations ranging from slightly 
positive (P= 0.02) to strong positive correlations (P = 0.92). Of 

the all unique pairwise correlations, the strongest correlation 
is between urinary platinum and beryllium (P = 0.92), which 
presents high relation. Besides, urinary cesium and thallium 
present significantly (P = 0.57).

Heavy metals exposure and allostatic load score in BKMR 
model
In the BKMR model, allostatic load score was decreased 
for co-exposure to heavy metals mixtures above the 50th 
percentile compared to the medians. Figure 4A shows the 
overall exposure-response function trend of 12 heavy metals. 
When the other 11 metals were fixed at the median level, the 
univariate exposure-response relationship showed Cs, Pt, Pb, 
Co and Mo have a downward trend with ALS, with non-linear 
relationship. Notably, the univariate exposure–response curve 
for Cs and Pt is steeper than that for other three metals. The 
other seven metals do not show obvious ALS relationship. 
(Figure.4B). 
Table 4 shows higher estimated PIPs for Cs (PIP = 1.0000), 
Pt (PIP = 1.0000), Mo (PIP = 0.9384), Co (PIP = 0.9272) Pb 
(PIP=0.9088), consistent with the previous two models.  We 
further explored heavy metal interactions (Figure 4C). We fixed 
the other heavy metals at the median level and determined 
the exposure-response function of one heavy metal to a 
second heavy metal at its 10th, 50th, and 90th percentiles, 
respectively. No evidence of chemical interaction was found 
among each two of these heavy metals.

A
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Figure 3. Spearman correlations among the mixed exposure of twelve metals in the participants.

Figure 4. BKMR model. (A) Overall effect of metals in urine and ALS based on BKMR. (B)Univariate exposure–response function between each 
heavy metals and ALS when the other heavy metals were fixed at 50th percentiles. (C) Bivariate exposure-response relationship between twelve 
urinary heavy metals and ALS (a visualization for evaluating interactions).The model adjusted for all covariates. Ba, Barium; Be, Beryllium; Cd, 
Cadmium; Co, Cobalt; Cs, Cesium; Mo, Molybdenum; Pb, lead; Pt, Platinum; Sb, Antimony; Tl, Thallium; W, Tungsten; U, Uranium.

A

A
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Heavy metals PIP value
Ba 0.7372
Be 0.8704
Cd 0.8924
Co 0.9272
Cs 1.0000
Mo 0.9384
Pb 0.9088
Pt 1.0000
Sb 0.8736
Tl 0.8780
W 0.8708
U 0.7960

Table 4. The posteriori inclusion probability of single urinary metals

Evaluation and comparison of the ML model
Figure. 5 depicts three ML models. The study used 10-fold 
cross-validation to divide the entire sample into 10 equally 
sized subsamples. Among the 10 subsamples, one was 
retained as the verification data set of the test model, and the 
remaining nine were used as the training data set. After the 
cross-validation process was repeated 10 times, 10 results 
were generated, and the average value was taken as the 
performance metric. In this paper, the Root Mean Absolute 
Error (RMAE) was selected as the evaluation index.
 Comparing the prediction performance of the RF, KNN and 
XGBoost prediction model, in terms of the Root Mean Absolute 
Error (RMAE), the RMAE of the RF prediction model was 
2.377428, the RMAE of the KNN model was 2.501523 and the 
RMAE of the XGBoost model was 2.377733. Respectively. The 
prediction accuracy of the RF prediction model was best in 
three model (Table 1). The results were also shown in Figure 5.

Figure 5. Three ML model benchmark test results.

Discussion

Allostatic load which indicates the cumulative strain 
associated with the chronic stress response due to repeated 
environmental challenges is quantified by the allostatic 
load score, an established measure of the cardiovascular, 
metabolic, and immune ramifications of stress. [7] [8]Some 
studies was observed that heavy metals had significant and 
positively associations with CVD. [26] [27] [28]And long-term 
exposure to heavy metals (either low-dose or high-dose) 
uniformly causes immunosuppression and directly interferes 
with the sensitization of the immune system to antigens [29]. 
However, A study based on the data of NHANES from 2005 to 
2018, through WQS and BKMR models, found that the mixed 
metals content in urine was negatively correlated with Mets. 
And in the study of single metal, the contents of Cs and Pb in 
urine are verified to be negatively correlated with Mets through 
logistic regression and the BKMR model [20]. 
Based on the data of NHANES from 2005 to 2010, this study 
analyzed twelve kinds of metals in urine and found that the 
mixed metals content in urine was negatively correlated with 
ALS through WQS and BKMR models. In the study of single 
metal, linear regression and the BKMR model verify that the 
contents of Cs, Pb, Mo and Pt in urine are negatively correlated 
with ALS. With the increase in metals content, allostatic 
load is monotonically decreasing. The result is contrary to 
our previous speculation. We surmise that there may be one 
reasons that the effect on metabolism may be the main factor 
between twelve urinary heavy metals and allostatic load.
According to previous research, Cs is closely related to the 
diagnostic factors of ALS. A study suggests that Cs are 
significantly related to HDL by studying chronic exposure 
of adult, postnatal and in utero rat models to low-dose 137 
Cesium [30]. A repeated-measures study of older adults in 
Beijing showed that Cs were positively correlated with HDL [31], 
consistent with previous research results [32]. In addition, it 
is found that Cs have no significant relationship with SBP but 
have a negative correlation with DBP [31]. A study has found 
a significant negative correlation between Cs and BMI by 
utilizing the NHANES 99-02 data [33].
As for the mechanism behind the conclusion that the 
combined effect of 12 urinary metals is negatively correlated 
with allostatic load, we speculated that it may be related to the 
disruption of cell homeostasis by heavy metals such as lead, 
which can replace bivalent cations such as calcium and zinc, 
but also activate the Keap1-Nrf2 pathway. After Nrf2 enters 
the nucleus, it initiates the expression of genes regulated by 
antioxidant reaction elements (ARE), promotes the production 
of antioxidant enzymes such as glutathione synthetase and 
superoxide dismutase (SOD), and enhances the resistance 
of cells to oxidative stress, thus reducing the contribution of 
oxidative damage to adaptive load. At the same time, lead 
exposure induces the upregulation of endoplasmic reticulum 
(ER) stress proteins, such as glucose-regulating protein 
GRP78, and activates the unfolded protein response (UPR). 
Moderate UPR can repair cell function by enhancing protein 
folding capacity and clearing misfolded proteins, which may 
relieve stress load in the short term [34]. 
Regarding the correlation between beryllium and platinum, 
it has been shown that beryllium (BeSO4) and the platinum 
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compound (PT-5-sulfomercaptoquinoline salt) both inhibit CA-
ATPase activity in the sarcoplasmic reticulum (SR), but their 
inhibition is weaker than that of other compounds such as 
aminophenthiazine. This suggests that the two may indirectly 
affect each other's metabolic or excretory pathways by 
interfering with the activity of membrane-binding enzymes, 
such as those associated with calcium ion transport, which 
may be the reason for the correlation of composition in the 
urine of the two [35]. 
Since machine learning algorithms were widely used in 
diagnosing and prediction, we tried to make a prediction 
of ALS. We used a machine learning algorithm suitable for 
large-scale data, including 4231 samples. The RF model with 
RMSE was 2.377428. The model could be used to predict ALS 
for individuals, and provided a theoretical basis for further 
allostatic load targeted interventions.
This study still has some limitations. First, NHANES adopts a 
cross-sectional design, so it cannot further judge the causal 
relationship between metals content in urine and ALS. Second, 
the participants in this study are all Americans, and the results 
obtained may not apply to other people. Third, NHANES uses 
random urine samples to detect the metal concentrations in 
urine, and there may be some deviations in the metals content 
in urine. Because ALS is a continuous variable, we just use 
three ML models to predict ALS and the evaluation index of 
the ML model is single, lacking credibility.

Conclusion

The analysis of NHANES data showed that the mixed effect of 
twelve metals in urine is negatively correlated with ALS among 
American adults. The contents of cesium (Cs), Molybdenum 
(Mo), lead (Pb), Platinum (Pt) in urine were most negatively 
correlated with ALS. It is hoped that there will be a cohort 
study in the future to expose the influence of metals on ALS, 
which can provide higher-level evidence. In addition, it is hoped 
that relevant basic research can reveal the mechanism of the 
occurrence and development of metals and allostatic load. 
Finally, we employed three ML models to establish a predictive 
model for ALS utilizing heavy metals exposure data from the 
NHANES. Among these models, the RF approach exhibited 
superior performance.
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