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Abstract

The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway, a central hub of the innate immune system, is a key me-
diator of immune surveillance against abnormal cytoplasmic dsDNA: cGAS recognizes such dsDNA to synthesize 2'3'-cGAMP, which activates 
STING and downstream signaling to drive IFN-I and proinflammatory cytokine expression for the maintenance of homeostasis. This mechanism 
enables the pathway to exert multidimensional roles in physiology and pathology. Its activity is fine-tuned by post-translational modifications 
and non-coding RNAs. Given its critical role in linking innate immunity to disease progression, it has become a promising therapeutic target. This 
review summarizes the pathway’s regulatory mechanisms and pathological implications, detailing its roles in immune activation, disease dysreg-
ulation, and therapeutic development. It also addresses existing challenges and proposes future directions, aiming to provide new insights for 
precision therapy against cGAS-STING-associated diseases.
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The cGAS-STING Pathway: Insights into Regulatory Mechanisms, 
Disease Dysregulation, and Therapeutic Development

Introduction

The innate immune system is the first line of defense against 
external pathogens, playing a crucial role in immune respons-
es. As a major component of the immune system, the innate 
immune system not only provides timely defense responses at 
the onset of infection but also triggers a series of immune re-
actions by recognizing exogenous pathogens and endogenous 
damage signals, thereby maintaining bodily homeostasis [1]. 
Unlike adaptive immunity, the innate immune system does not 
rely on prior immunological memory. Instead, it directly recog-
nizes pathogen-associated molecular patterns (PAMPs) and 
damage-associated molecular patterns (DAMPs) through a 
wide array of pattern recognition receptors (PRRs), which rap-
idly activate inflammatory responses, initiate antiviral mecha-
nisms, and regulate immune balance [2-3].
In innate immune responses, the cGAS-STING pathway has be-
come a research hotspot in recent years and has been shown 
to play a critical role in various immune responses [4]. The 
cGAS-STING signaling pathway is a central immune signaling 
pathway in both the innate immune system and intracellular 
signaling. It serves as a key “DNA-sensing” pathway, deeply 
involved in the host’s immune response to exogenous patho-
gens (such as viruses and bacteria) and responses to endog-
enous damage [5-7]. As a DNA sensor in this pathway, cGAS 

recognizes double-stranded DNA (dsDNA) that is abnormally 
present in the cytoplasm. Under physiological conditions, there 
is no exogenous DNA in the cell, but when viral infections or 
cellular damage occur, exogenous DNA appears. At this point, 
cGAS synthesizes the cGAMP (cyclic GMP-AMP) dimer mol-
ecule. STING, located on the membrane of the endoplasmic 
reticulum (ER), serves as a receptor for cGAMP. Upon binding 
with cGAMP, STING undergoes a conformational change and 
translocates to the Golgi apparatus, where it activates down-
stream signaling molecules such as TBK1 and IRF3. This acti-
vation ultimately triggers the expression of type I interferons, 
pro-inflammatory cytokines, and other immune-related genes, 
helping the body resist pathogen invasion, eliminate damaged 
cells, and exert antiviral, antitumor, and immune regulatory ef-
fects [8].
The cGAS-STING pathway is not only a critical component of 
antiviral immunity but also plays a significant role in regulating 
various physiological and pathological processes, including 
cell death, tumor immunity, and anti-inflammatory responses. 
Therefore, understanding the molecular mechanisms underly-
ing this pathway and elucidating its functions in different cells 
and tissues is crucial for the development of novel immuno-
therapies. Despite the increasing recognition of the role of the 
cGAS-STING pathway in disease defense, current research 
still faces several bottlenecks. These bottlenecks primarily 
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include an incomplete understanding of the fine-tuned regula-
tory mechanisms that activate the pathway and challenges in 
developing targeted therapeutics [9]. Issues such as multiple 
variations of the STING receptor, the stability of cGAMP, and 
the complexity of the interaction between cGAS and STING 
limit the clinical application potential of this pathway [10].
It is important to note that the role of the cGAS-STING pathway 
extends beyond immune defense. It is also closely associated 
with the development and progression of various diseases, in-
cluding cancer and autoimmune diseases. Therefore, research 
into the regulatory mechanisms of this pathway holds signif-
icant theoretical and clinical value in immunology, oncology, 
and other related fields.
This review aims to summarize the mechanisms of the cGAS-
STING pathway in different physiological and pathological 
states and to analyze the challenges and bottlenecks it faces 
in clinical applications. By providing a comprehensive biolog-
ical analysis of the cGAS-STING pathway, this paper seeks to 
offer new insights and targets for drug development in related 
diseases and to provide a theoretical foundation for the opti-
mization of future therapeutic strategies. It is hoped that this 
review will inspire new breakthroughs and directions in the 
field of disease treatment, particularly in immunotherapy for 
cancer, autoimmune diseases, and viral infections.

Activation and Inhibition of the cGAS-STING 
Pathway

When the chromosomal DNA of a virus or cancer cell enters 
the cytoplasm and binds to cGAS, cGAS catalyzes the pro-
duction of 2'3'-cGAMP. On the ER, STING undergoes a con-
formational change upon sensing 2'3'-cGAMP, causing the 
cGAS-STING signaling pathway to transition from an inactive 
(closed) state to an active (open) state. This transition pro-
motes the assembly of the TBK1-IRF3 complex, ultimately 
triggering type I interferon responses and the release of other 
inflammatory cytokines [11-12]. As a sentinel for pathogen 
invasion, cGAMP ensures the pathway remains activated until 
the virus or pathogen is cleared. Once eliminated, the cGAS-
STING pathway reverts to its closed state. Studies have shown 
that cGAMP could be degraded by several enzymes, such as 
ENPP1, ENPP3, and SMPDL3A, to limit cGAS-STING signaling 
and maintain systemic inflammatory homeostasis [13].
Under physiological conditions, the activation and inhibition of 
the cGAS-STING pathway are tightly regulated. However, some 
viruses possess mechanisms to suppress this pathway. For 
instance, the HSV-1 virus inactivates STING, thereby inhibiting 
the cGAS-STING pathway to evade the innate antiviral immune 
response [14]. Additionally, methyltransferase PRMT6 has 
been shown to impair the TBK1-IRF3 signaling cascade, weak-
ening the innate antiviral immune response [15]. These find-
ings emphasize the crucial role of the cGAS-STING pathway 
in defending against viral invasion and activating the innate 
immune system.
In certain pathological conditions, such as systemic lupus er-
ythematosus (SLE), Stimulator of IFN Genes-Associated Vas-
culopathy with Onset in Infancy (SAVI), and systemic sclerosis, 
the accumulation of abnormal DNA could activate the cGAS-
STING pathway, leading to sustained activation of downstream 
immune signaling and exacerbating inflammation-mediated 

damage [16]. The use of cGAS-specific small molecule inhibi-
tors effectively suppresses interferon expression triggered by 
dsDNA, mitigating inflammation [17]. Examples of such inhib-
itors include RU.521 [18], PAH [19], and VENT-03 [20]. Notably, 
the VENT-03 inhibitor has entered Phase I clinical trials, repre-
senting a novel therapeutic approach for autoimmune diseas-
es (Figure 1).

Figure 1. Fundamental Activation and Inhibition Mechanisms of the 
cGAS-STING Pathway.

Crosstalk Between the cGAS-STING Pathway 
and Subcellular Organelles

Regulation of STING by the ER
STING is primarily localized within the ER, where it can activate 
the NF-κB and IRF3 transcriptional pathways, thereby induc-
ing the expression of type I interferons (e.g., IFN-α and IFN-β), 
which subsequently promote an effective antiviral state upon 
expression [21]. There is a close anatomical and functional 
connection between the ER and mitochondria, which commu-
nicate through calcium ions and reactive oxygen species (ROS), 
facilitating inter-organelle signaling. STING is highly localized 
in the ER-mitochondria-associated membrane (MAM) regions, 
a unique position that allows it to respond acutely to cellular 
organelle stress, such as the leakage of mitochondrial DNA 
(mtDNA) [22]. The ER plays a crucial role in protein folding, 
lipid synthesis, and calcium storage, serving as an important 
platform for STING synthesis, modification, and residence. The 
interaction between STING and the ER forms the core of the 
cGAS-STING pathway, making the ER a key hub in the regula-
tion of STING signaling [23].

Crosstalk Between Lysosomes and STING Signaling
Studies have shown that there is a reciprocal regulatory rela-
tionship between the cGAS-STING pathway and lysosomes. 
During pathogen invasion, the cGAS-STING pathway activates 
the transcription factor TFEB, which promotes lysosomal bio-
genesis and accelerates the clearance of cytosolic DNA and 
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invading pathogens [24]. This process highlights that inducing 
lysosomal biogenesis is another important function of the 
cGAS-STING pathway. In a mouse model of HSV-1 infection, 
UNC93B1 targets STING to promote the autophagy-lysosome 
degradation pathway, which in turn reduces the activity of the 
cGAS-STING signaling pathway [25]. Furthermore, the absence 
of the T-cell immune-related FBXO38 protein leads to lyso-
some-dependent STING degradation, inhibiting the activation 
of the STING pathway [26].
Moreover, research indicates that the ER-lysosome lipid trans-
porter VPS13C/PARK23 could inhibit abnormal mtDNA-depen-
dent STING signaling [27]. Recent studies show that STING 
induces the lipidation of GABARAP on single-membrane vesi-
cles, specifically inhibiting mTORC1-mediated phosphorylation 
of TFEB. Subsequently, TFEB translocates to the nucleus to 
regulate the expression of lysosome-related genes. STING-ac-
tivated lysosomes not only efficiently clear cytosolic DNA 
but also enhance the clearance of bacteria (e.g., Salmonella 
Typhimurium) and viruses (e.g., HSV-1) [24]. These studies 
underscore the significant role of STING in inter-organelle in-
teractions (Figure 2).

Figure 2. Crosstalk Mechanisms between the cGAS-STING Pathway 
and Subcellular Organelles (ER / Mitochondria / Lysosomes).

Non-Coding RNA Regulatory Networks

miRNA Regulation of STING
MicroRNAs (miRNAs) are non-coding RNA molecules, typically 
around 20-24 nucleotides in length, that play a crucial role in 
regulating STING gene expression [28]. Studies have shown 
that STING is a direct target of miR-4691-3p, which inhibits 
STING expression and negatively regulates the cGAS-STING 
pathway, thereby suppressing inflammatory responses [29]. 
Additionally, miR-181a can target STING to inhibit the pro-
duction of pro-inflammatory factors, promoting resistance to 
PARP inhibitors in triple-negative breast cancer (TNBC) and 
ovarian cancer (OVCA) [28]. Similarly, in multiple myeloma 
(MM), exosome-derived miRNA secretion suppresses the anti-
viral immune function of the cGAS-STING pathway [30].

lncRNA Regulation of STING
Studies have shown that long non-coding RNAs (lncRNAs) 
are closely associated with the activation of the cGAS-STING 
pathway and play significant regulatory roles in both physio-
logical and pathological processes [31]. In non-small cell lung 
cancer (NSCLC), lncRNA PCAT1 could inhibit T cell activation 

mediated by the cGAS-STING signaling pathway through the 
activation of SOX2, thereby promoting tumorigenesis and 
immune suppression [32]. In glioma, the inhibition of lncRNA 
RP11-770J1.4 downregulates the expression of the down-
stream protein CTXN1, activates the cGAS-STING pathway, 
and induces the secretion of related inflammatory factors [33]. 
In nasopharyngeal carcinoma (NPC), lncRNA FAM255A regu-
lates the expression of CENP-N through interaction with FUS, 
affecting the cGAS-STING pathway. Specifically, the activation 
of the FUS/CENP-N/cGAS-STING signaling pathway promotes 
tumor progression, while the suppression of lncRNA FAM255A 
expression weakens the malignant characteristics of tumor 
cells [34].
These studies highlight the close regulatory association be-
tween non-coding RNAs and STING, suggesting that th ey may 
serve as upstream regulatory genes for STING and potential 
molecular targets for therapeutic interventions (Figure 3).

Figure 3. Regulation of the cGAS-STING pathway by non-coding RNAs 
(miRNA/lncRNA).

Inflammation-Related Diseases

cGAS-STING Pathway Regulation of Inflammation-Related 
Mechanisms
The cGAS-STING pathway activates the expression of pro-in-
flammatory factors such as LPS, IL-6, and IL-1β through the 
non-classical NF-κB pathway, thereby promoting the exacer-
bation of the inflammatory response [35]. Studies have shown 
that the gut microbiota can initiate a systemic antiviral immune 
response through the cGAS-STING-IFN-I axis [36]. Additionally, 
autophagy regulates the cGAS-STING pathway negatively by 
clearing cytosolic DNA. Defects in this process may lead to 
the development of chronic inflammatory diseases such as 
Crohn’s disease [37]. At the molecular level, the TBK1-activated 
p62/SQSTM1- mediated autophagy pathway effectively weak-
ens the transmission of cGAS-STING signals [38], thus mod-
ulating the intensity and duration of immune responses and 
preventing immune dysregulation and chronic inflammation 
caused by excessive activation. Meanwhile, STING activation 
also suppresses the secretion of the anti-inflammatory factor 
IL-10, further exacerbating the inflammatory response [39-40]. 
However, there is controversy regarding STING's regulation of 
IL-10. Some studies suggest that STING activation can pro-
mote IL-10 secretion in certain inflammatory environments, 
especially in intestinal inflammation [41]. This suggests that 
the immunoregulatory role of STING may depend on specific 
physiological and pathological states.

A
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Systemic Autoimmune Diseases
Gain-of-function mutations in STING lead to excessive 
activation of the cGAS-STING pathway, triggering an over-
active inflammatory response. For example, mutations in 
the TMEM173 gene (such as N154S and V155M) result in 
sustained STING activation, causing systemic autoimmune 
vasculitis and pulmonary fibrosis, known as SAVI, which typ-
ically manifests in infancy [42-43]. Research has shown that 
interferon-stimulated genes (ISGs) are persistently upregulat-
ed in SAVI patients, closely associated with the overactivation 
of the JAK-STAT signaling pathway. This abnormal activation 
not only promotes enhanced immune responses but may also 
worsen the inflammatory process of autoimmune diseases, 
highlighting the central role of the cGAS-STING pathway in the 
pathogenesis of SAVI [44-45].
Studies have indicated that genetic STING gain-of-function mu-
tations are critical factors in familial inflammatory syndromes 
with lupus-like symptoms, revealing an important link between 
STING and SLE [46-47]. It has been reported that self-antibod-
ies in SLE patients continually activate the cGAS-STING path-
way, resulting in the release of numerous inflammatory factors 
and further exacerbating the condition [48].
In lupus nephritis (LN), STING activation promotes ferroptosis 
and inflammation through the TBK1/NF-κB signaling path-
way, advancing disease progression [49]. However, studies in 
mouse models have found that the cGAS-STING pathway does 
not promote autoimmune responses in SLE mouse models 
[50]. This finding suggests that directly applying mouse model 
findings to human diseases may present challenges due to the 
complex genetic background of SLE patients.

Organ-Specific Inflammation
In the pathogenesis of alcoholic hepatitis, leakage of mito-
chondrial DNA (mtDNA) is considered a key trigger of immune 
responses. mtDNA activates the cGAS-STING pathway, thereby 
stimulating downstream IRF3 and NF-κB signaling pathways. 
The activation of these pathways leads to the excessive se-
cretion of pro-inflammatory cytokines such as IL-6 and TNF-α, 
further aggravating the liver's inflammatory response. mtD-
NA leakage is closely related to alcohol-induced hepatocyte 
damage, and the cGAS-STING pathway plays a key role in the 
immune dysregulation and inflammatory response in alcoholic 
hepatitis [51-52].
In LN, STING activation induces NLRP3 inflammasome ac-
tivation and promotes necroptosis of kidney macrophages, 
thereby worsening the formation of proteinuria [53]. However, 
STING deficiency can alleviate symptoms of glomerulone-
phritis [54]. Mechanistically, STING upregulation enhances 
TBK1 expression and activates NF-κB signaling, which triggers 
ferroptosis and intensifies renal inflammation [49]. Therefore, 
regulating STING activity may represent a potential strategy 
for treating LN.
Studies have shown that under oxidative stress conditions, 
STING accelerates retinal pigment epithelial cell senescence 
through the NF-κB/HIF-1α signaling pathway [55]. In blood 
flow patterns, oscillatory shear stress (OSS) activates the ROS-
STING axis, leading to endothelial cell senescence and pro-
moting the development of atherosclerosis [56]. Furthermore, 
it has been shown that in aging endothelial cells, the cGAS-
STING pathway is activated, further damaging vascular dilation 
function, while inhibition of cGAS-STING expression helps pro-

tect vascular function [57]. In Alzheimer's disease (AD), NAD+ 
depletion activates the cGAS-STING pathway, exacerbating 
neuroinflammation and accelerating cellular senescence. Sup-
plementing NAD+ has been shown to alleviate cellular senes-
cence effectively [58]. This suggests that the STING signaling 
pathway plays a critical role in the progression of age-related 
chronic diseases.
Future research directions include developing tissue-specific 
STING inhibitors, such as targeting kidney-specific nanoparti-
cles to deliver H-151 inhibitors, to improve treatment targeting 
and efficacy [59]. Additionally, analyzing the structure-activity 
relationship of STING mutants (e.g., SAVI-related variants) will 
aid in the design of highly selective allosteric modulators to 
precisely regulate the cGAS-STING pathway, thereby improving 
the therapeutic outcomes for related diseases. These studies 
will provide new treatment strategies for clinical applications.

Infection and Immune Response

Antiviral Immunity
The cGAS-STING pathway activates intracellular immune re-
sponses through the recognition of viral DNA (such as HSV-1), 
triggering the secretion of IFN-I [60]. This process depends on 
cGAS recognizing viral DNA to generate cGAMP, which acti-
vates the STING protein. The activated STING interacts with 
TBK1 to promote its phosphorylation, further activating the 
transcription factor IRF3, which ultimately induces the expres-
sion of IFN-I [61-62].
RNA viruses, such as SARS-CoV-2 [63] and respiratory viruses 
(RVs) [64], induce mitochondrial dysfunction upon infection, 
leading to the release of mtDNA into the cytoplasm. Released 
mtDNA is recognized as a danger signal, further activating the 
cGAS-STING pathway. Following STING activation, a phosphor-
ylation cascade involving TBK1 and IRF3 induces the produc-
tion of a large amount of type I interferons and inflammatory 
factors, triggering a cytokine storm [65].
Studies have shown that HSV-1 escapes host immune sur-
veillance by targeting the cGAS-STING pathway, inhibiting the 
immune response to the virus. STING is an important recogni-
tion molecule in the immune system that senses intracellular 
DNA damage or infection signals, activating downstream 
interferon responses and initiating antiviral immunity. HSV-1 
effectively suppresses this immune response by disrupting the 
cGAS-STING pathway, facilitating its survival within the host 
[61]. Therefore, key regulation of the cGAS-STING pathway for 
oncolytic virus therapy may become an important strategy to 
improve efficacy. Optimizing cGAS-STING pathway activation 
or blocking its evasion mechanisms may enhance the immune 
effects of oncolytic viruses, highlighting the value of precise 
regulation of the cGAS-STING pathway in this therapeutic con-
text [66].
However, some viruses can suppress host antiviral immune re-
sponses through various specific immune evasion strategies. 
For instance, the UL41 protein of herpesvirus degrades cGAS 
or blocks the binding of STING with TBK1, inhibiting IFN acti-
vation and thereby evading immune surveillance [67]. HPV11 
targets STING for ubiquitin-mediated degradation via the E7 
protein, reducing the expression of IFN-I in epithelial cells and 
further evading host immune defense [68]. However, adenovi-
ruses have a minimal impact on this immune evasion mecha-
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nism, indicating that different viruses exhibit variability in their 
immune escape strategies [69].
In addition to collaborating with RIG-I to recognize RNA virus-
es, STING interacts with other PRRs to coordinate immune 
responses. For example, TBK1 recruits STING to activate IRF3 
and NF-κB, mediating immune defense against tumors and 
viral infections [70]. Moreover, STING and RIG-I activate the 
IFN-I cascade via the mitochondrial adapter protein MAVS and 
TBK1, demonstrating the central role of STING in regulating 
host immune responses [71]. In summary, the cross-regula-
tion between STING and PRR pathways amplifies the host's 
immune response to viruses and optimizes antiviral defense 
mechanisms.

Bacterial and Parasitic Infections
The cGAS-STING pathway recognizes the DNA or metabolic 
products of Legionella, inducing the production of IFN-I and 
pro-inflammatory cytokines to restrict bacterial replication. 
However, the HAQ-STING variant significantly weakens this 
immune response, increasing the host's susceptibility to Legio-
nella [72]. Additionally, during the later stages of the develop-
mental cycle, Chlamydia trachomatis activates STING through 
the CTL0390 protein, the key molecule that connects C. tra-
chomatis to STING and mediates the 'STING-dependent lysis 
process.' This activation regulates the translocation of STING 
to the Golgi apparatus. Subsequent to the activation of STING, 
which leads to lytic expulsion, ultimately aiding the release of 
the pathogen from the host cell [73]. 
In sepsis-induced acute lung injury (ALI), the cGAS-STING 
pathway significantly enhances inflammation by activating 
the PARP-1/NLRP3 signaling pathway, leading to pathological 
damage in lung tissue, pulmonary edema, and exacerbated 
inflammation [74]. Furthermore, research indicates that STING 
deficiency aggravates Gram-negative bacterial infections, sug-
gesting a complex bidirectional regulatory role for STING in 
immune responses [72]. Thus, the expression levels of STING 
may play a key "balancing" role in different pathological states, 
potentially promoting disease progression or, in some cases, 
inhibiting pathological processes.
Plasmodium infections activate the host immune response via 
the cGAS-STING pathway, inducing the production of IFN-I [75]. 
This process enhances the expansion of Treg cells, exerting 
immune-suppressive effects and limiting excessive inflam-
mation and pathological damage. The activation of the cGAS-
STING pathway not only enhances IFN-I expression but also 
promotes the proliferation of Treg cells, playing an important 
role in the immune regulation of Plasmodium infections [76].

Immune Evasion Mechanisms
Studies indicate that the NS4B protein of HCV can directly bind 
to STING and inhibit RIG-I-mediated IFN-I expression, helping 
the virus evade host immune responses [77]. Additionally, 
flaviviruses could activate the RIG-I-STING pathway, causing 
neuronal death and triggering inflammatory responses. This 
mechanism underscores the key role of this pathway in viral 
infections of the nervous system [78]. Moreover, poxviruses 
suppress IFN-I responses induced by dsDNA via the cGAS-
STING pathway, inhibiting host immune responses by blocking 
STING activation, thereby regulating the cGAS-STING pathway 
to promote viral survival [79-80].
STING's function is significantly influenced by genetic poly-

morphisms, such as R232, H232, and HAQ variants. For exam-
ple, the H232 variant exhibits impaired function, resulting in 
increased susceptibility to DNA viruses like HSV-1 and MVA, 
while the HAQ and R232 variants maintain normal function 
[81]. Additionally, STING deficiency weakens monocyte differ-
entiation and antigen-presenting capacity, affecting immune 
responses. In HIV-infected individuals, the HAQ/HAQ STING 
variant is associated with lower chronic immune activation 
and slower disease progression [82], suggesting that STING 
genetic variants may modulate immune responses and influ-
ence host susceptibility to viral infections.
Moreover, chronic viral infections, such as HIV, are often ac-
companied by prolonged immune activation. Although antiret-
roviral therapy (ART) effectively suppresses the virus, it may 
lead to long-term STING activation, thereby triggering autoim-
mune responses. In this context, the expression of STING and 
cGAS genes is significantly downregulated, while autoantibody 
production increases, indicating the important role of STING 
in maintaining immune tolerance [83]. Furthermore, activating 
mutations in STING1 can lead to SAVI, which presents with 
early-onset systemic inflammation, skin vasculopathy, and 
interstitial lung disease (ILD). Although the clinical features of 
SAVI are relatively well defined, its specific molecular mech-
anisms remain unclear and require further investigation to 
reveal STING's potential role in autoimmunity and related dis-
eases [42].
Future research could focus on two main areas: first, the 
screening of broad-spectrum antiviral compounds, particularly 
those targeting the pathogen-STING interaction interface, such 
as poxin inhibitors from poxviruses, which could provide new 
strategies for antiviral therapy [84]. Secondly, a deeper under-
standing of the impact of STING allele polymorphisms (e.g., 
R232, H232, and HAQ) on susceptibility to infections across 
global populations will help elucidate the relationship between 
individual immune response differences and disease suscep-
tibility, offering more efficient approaches for personalized 
immunotherapy [85].

Metabolism and Fibrosis

Metabolic Abnormalities
Obesity is widely regarded as a risk factor for various cancers 
and is closely associated with chronic inflammation. In adipo-
cytes, mitochondrial dysfunction leads to mtDNA leakage, ac-
tivating the cGAS-STING pathway, which reduces fat accumu-
lation by promoting autophagy in adipocytes [86-87]. Studies 
have shown that palmitoylation of STING plays a key role in the 
development of obesity. Fatty acid oxidation significantly inhib-
its the antiviral activity of STING by reducing its palmitoylation, 
a critical modification for activating its downstream signaling 
pathways. This inhibitory effect on fatty acid oxidation may 
impair STING's normal function by lowering palmitoylation [88]. 
Palmitoylation typically occurs in the Golgi apparatus, and its 
levels are significantly reduced in obesity models, resulting in 
abnormal binding between STING and TBK1, which suppress-
es its normal autophagic function, thereby exacerbating fat 
accumulation and promoting the development of obesity [89]. 
Additionally, the cGAS-STING pathway plays an anti-inflamma-
tory role in adipocytes by promoting mitophagy, thus inhibiting 
excessive activation of the inflammatory response. Inhibition 
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of STING expression leads to a reduction in autophagosome 
numbers, disrupting the balance of fat metabolism [86]. This 
process may exacerbate inflammation in adipocytes and fur-
ther increase the risk of cancer associated with obesity. There-
fore, STING may play a crucial role in the link between obesity 
and cancer, regulating metabolic and inflammatory responses 
in adipocytes. This suggests that dysregulated palmitoylation 
of STING could be an important mechanism in obesity-related 
metabolic disorders, and it indicates a close connection be-
tween lipid metabolism and immune responses. This provides 
a potential therapeutic target for future treatments targeting 
the cGAS-STING pathway.
Glucose could regulate the cGAS-STING pathway. Studies 
have shown that high glucose concentrations can induce 
STING activation, promoting macrophage polarization to the 
M1 type, thereby inhibiting wound healing in diabetic patients 
[90]. In type 2 diabetes models, reducing STING expression 
can improve peripheral insulin resistance and correct glucose 
intolerance abnormalities [91]. During tumor development, 
NSUN2 acts as a glucose sensor and inhibits the cGAS-STING 
signaling pathway, thereby promoting tumor progression and 
increasing immune therapy resistance. In contrast, inhibiting 
NSUN2 activity activates the cGAS-STING pathway, not only 
curbing tumor growth but also enhancing the effectiveness of 
immune therapy [92].

Organ Fibrosis
In liver fibrosis research, the cGAS-STING pathway, as a DNA 
sensor located in the cytoplasm, has attracted significant at-
tention. Studies have found that STING is expressed in non-pa-
renchymal liver cells, particularly in macrophages [93]. In 
patients with non-alcoholic fatty liver disease (NAFLD), the ex-
pression of STING in monocyte-derived macrophages is close-
ly related to the worsening of liver inflammation and fibrosis 
[94]. Furthermore, STING activates the NLRP3 inflammasome, 
inducing pyroptosis in hepatocytes and thereby exacerbating 
the progression of liver fibrosis [95]. These findings suggest 
that dysregulated STING expression may be a key driver of liv-
er fibrosis progression.
Pulmonary fibrosis is a progressive and ultimately life-threat-
ening lung disease. Studies have shown that abnormal acti-
vation of cGAS-STING participates in and promotes the devel-
opment of fibrotic lung diseases. Polystyrene microplastics 
(PS-MPs) can promote ferroptosis in alveolar epithelial cells 
through cGAS-STING pathway, thereby triggering pulmonary 
fibrosis [96-97]. However, other studies have pointed out that 
in idiopathic pulmonary fibrosis (IPF), STING has a protective 
effect on lung fibrosis, with its reduced expression exacerbat-
ing the fibrotic process [98].
Renal fibrosis is a common lesion leading to end-stage renal 
failure. Studies have shown that activation of the STING/
ACSL4 pathway promotes ferroptosis and inflammation, fur-
ther advancing chronic kidney disease (CKD) [99]. Additionally, 
mitochondrial damage and activation of the cGAS-STING path-
way exacerbate kidney inflammation and fibrosis progression 
[100]. Butyrate, through modulation of the STING/NF-κB/p3 
pathway, can affect NLRP65-mediated pyroptosis, thereby alle-
viating kidney fibrosis symptoms in CKD patients [101].
Future research could focus on developing tissue-specific 
regulation strategies for the STING pathway, such as using liv-
er-targeted lipid nanoparticles (LNPs) to deliver siRNA-STING, 

to explore their effects on liver metabolism and fibrosis [102]. 
Additionally, establishing multi-omics integration platforms to 
analyze the dynamic network of the metabolism-fibrosis-im-
mune axis could provide a more comprehensive understanding 
of the mechanisms, help identify new therapeutic targets, and 
promote the application of precision medicine in metabolic 
diseases [65, 103]. These studies are expected to reveal the 
role of the cGAS-STING pathway in various diseases and pro-
vide new ideas for clinical interventions.

cGAS-STING Pathway and the Nervous Sys-
tem

cGAS-STING Pathway Regulates Neuroinflammation
Studies have shown that under hypoxic conditions, glioblas-
toma (GBM) cells release extracellular vesicles (EVs) carrying 
miR-25/93 to macrophages, thereby inhibiting the cGAS-STING 
pathway, reducing type I interferon secretion (e.g., IFN-β), low-
ering the expression of M1 polarization-related genes (e.g., 
Cxcl9, Cxcl10, Il12b), and weakening macrophage anti-tumor 
immunity and T cell activation, which further fosters an immu-
nosuppressive tumor microenvironment (TME) [104]. Traumat-
ic brain injury (TBI) triggers the activation of the cGAS-STING 
pathway, which exacerbates neuroinflammatory responses 
through type I interferons (IFN-α/β) and pro-inflammatory fac-
tors (e.g., TNF-α, IL-1β, and IL-6), while also inducing autoph-
agy dysfunction (e.g., abnormal LAMP2). Studies have shown 
that STING gene knockout (STING⁻/⁻) could reduce the release 
of inflammatory factors, decrease lesion volume, and restore 
autophagic function, suggesting that STING exacerbates neu-
roinflammatory damage by enhancing type I interferon signal-
ing [105].
In a mouse spinal cord injury model, STING interacts with 
TBK1 to enhance TBK1 phosphorylation, activating down-
stream NF-κB and MAPK signaling pathways that amplify 
the inflammatory response of microglial cells, whereas sup-
pressing STING expression reduces the activation of these 
pathways and alleviates the inflammatory response, thereby 
facilitating spinal cord injury repair [106-107]. This suggests 
that STING may play a role in spinal cord injury by regulating 
inflammatory responses.
In HSV-1 encephalitis, neurons promote the secretion of IFN-λ 
via the activation of the cGAS-STING pathway, which aids in 
antiviral immunity and suppresses viral spread [61, 108]. How-
ever, a study indicates that excessive activation of STING may 
trigger an overactive inflammatory response, leading to blood-
brain barrier disruption, thus exacerbating neuronal damage 
and disease progression [109]. Therefore, the regulation of the 
cGAS-STING pathway needs to be finely balanced to ensure 
defense against viral infections while preventing damage to 
the blood-brain barrier.

Non-Classical Regulation of Neuronal Function by STING
In addition to its regulatory functions through the classical 
cGAS-STING pathway, STING could regulate neuronal func-
tions through non-classical pathways. Research suggests that 
intestinal neuroglial cells may employ alternative signaling 
mechanisms or express STING solely under certain disease 
conditions, with studies also revealing potential pathways for 
neuroglial cell-microbe communication within the intestinal 



Life Conflux

36

nervous system [110-111]. In a multiple sclerosis (MS) model, 
STING is activated in neurons and triggers the non-classical 
STIM1-STING signaling pathway, leading to the autophagic 
degradation of glutathione peroxidase 4 (GPX4) and causing 
ferroptosis [112]. This initiates inflammatory stress responses 
and cell death in neurons. STING is indirectly regulated by the 
biological clock gene BMAL1 through the LINE1-cGAS-STING 
pathway. When BMAL1 is deficient, heterochromatin stability 
is reduced, LINE1 is aberrantly activated, and the cGAS-STING 
pathway is triggered, leading to type I interferon responses 
and the senescence-associated secretory phenotype (SASP) 
[113-114]. This suggests that BMAL1, through its non-classical 
chromatin regulatory function, suppresses the LINE1-STING 
axis, maintains cellular homeostasis and delays aging.

STING Interaction with GBM
Research indicates that in GBM models, the activation of 
STING induces a strong immune response, mediates the NK 
cell-mediated tumor regression, and contributes to TME re-
modeling [115]. Additionally, preclinical studies have found 
that activation of the cGAS-STING pathway in the neuro-GBM 
immune microenvironment plays a positive role in therapy 
and achieves anti-tumor effects [116]. However, other studies 
have shown that in high-risk, recurrent-grade gliomas, STING 
expression is significantly upregulated, which may reflect the 
tumor cells' resistance to its effects [117].
Future research may explore the development of STING inhibi-
tors that can cross the blood-brain barrier, such as utilizing na-
no-carriers for delivering C-176 analogs, to precisely regulate 
cGAS-STING pathway activity and mitigate or slow the pro-
gression of neurodegenerative diseases [66]. Additionally, ex-
ploring the role of STING in regulating various neurological dis-
eases could open avenues for its application in personalized 
treatment. Another key direction is the study of combination 
therapies, such as combining STING modulation with immune 
agents, to explore synergistic effects in tumor suppression 
[118]. Furthermore, STING, as a potential biomarker for neuro-
degenerative diseases, warrants further exploration for early 
diagnosis and monitoring of these diseases [119].

Cancer and Immunotherapy

cGAS-STING Pathway and Tumor Immunity
As the global incidence of cancer increases, tumors have 
become one of the leading causes of death, so timely diagno-
sis and intervention are crucial for improving cure rates and 
enhancing patients' quality of life [120-121]. The cGAS-STING 
pathway serves as a crucial immune surveillance mechanism, 
inducing the production of IFN-I and various chemokines. 
These factors play a vital role in the recruitment and activation 
of CD8+ T cells [122]. In the TME, STING activation enhances 
immune responses, particularly the infiltration of T cells, con-
tributing to its antitumor effects [123-124]. Activation of the 
cGAS-STING pathway effectively suppresses the expression 
of immune checkpoint molecules such as PD-L1, thereby alle-
viating the immune suppression of tumor cells on T cells and 
promoting tumor immune clearance [125].
In certain subtypes of gastric cancer, such as dMMR/MSI-H 
gastric cancer, high STING expression has been confirmed to 
be closely associated with T cell infiltration. Studies show that 

patients with dMMR/MSI-H gastric cancer exhibit stronger im-
mune responses and higher levels of T cell infiltration upon ac-
tivation of the STING pathway, suggesting that these patients 
may benefit more from immune checkpoint inhibitor therapies 
[126-127]. Based on this, STING emerges as a potential thera-
peutic target, capable of significantly enhancing the efficacy of 
immunotherapy and improving patient survival by enhancing 
immune responses and remodeling the TME [128].

cGAS-STING Pathway and Synergy with Immune Cells
The synergy between STING and innate immune cells plays 
a crucial role in tumor immunity. Dendritic cells (DCs), upon 
activation of STING, promote cross-presentation of tumor an-
tigens through the cGAS-STING pathway, thereby enhancing 
antitumor immune responses [129]. This process not only 
enhances the immunogenicity of DCs but also strengthens the 
activation and functionality of T cells, facilitating the effective 
recognition and elimination of tumor cells. Research indicates 
that STING activation plays a key role in DC maturation, cyto-
kine release, and the inhibition of immune escape, providing 
important support for the development of cancer immunother-
apy [130-131].
However, some studies have shown that in pancreatic cancer, 
STING agonists could inhibit NK cell antitumor activity by ac-
tivating Breg cells to release IL-35, revealing the limitations of 
STING agonist monotherapy [132].

STING Suppression and Resistance to Targeted Therapy
STING suppression is a significant mechanism of resistance 
to targeted cancer therapies. HPV16 E7 inhibits STING by pro-
moting its degradation, thereby blocking the IFN-I signaling 
pathway and suppressing the antitumor immune response 
in cervical cancer cells. This enhances tumor resistance to 
radiotherapy, allowing tumor cells to evade host immune sur-
veillance and increasing resistance to radiation therapy [133-
134]. Furthermore, in triple-negative breast cancer (TNBC), 
ARAh silences STING through epigenetic mechanisms, thereby 
inhibiting its immune response activation and diminishing the 
effectiveness of PARP inhibitors [135-136]. These findings 
underscore the pivotal role of STING suppression in tumor im-
mune evasion and therapy resistance, emphasizing the need 
for targeted therapies to modulate the STING pathway.

cGAS-STING Pathway and Oncogenic Signaling
The cGAS-STING pathway plays a double-edged sword role in 
cancer development. mtDNA leakage caused by mitochondrial 
damage activates the cGAS-STING pathway, triggering intra-
cellular inflammation and promoting chromosomal instability 
(CIN) [137-138]. This process supports tumor cell survival and 
accelerates tumor progression via an IL-6-dependent pathway. 
In BRCA1-deficient ovarian cancer, the STING-mediated inflam-
matory microenvironment further promotes immune evasion 
and weakens the antitumor immune response. Studies have 
shown that PARP inhibitors significantly reverse this immune 
escape phenomenon, aiding the immune system in recogniz-
ing and clearing tumor cells, thereby improving therapeutic 
outcomes [139]. Activation of the STING-TBK1 axis promotes 
the expression of ATP-citrate lyase (ACLY), enhancing fatty 
acid synthesis and driving macrophages toward M2 polariza-
tion by remodeling lipid metabolism. This chromatin-regulated 
process further affects immune cell metabolism and function 
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[140-141].

Dual Roles of STING in Cancers
STAT3 deficiency disrupts the cGAS-STING-IFN pathway, there-
by impairing the inhibitory effect of NK and NKT cells on SCLC 
metastasis and dissemination. This process can be restored 
through the overexpression of IRF7 or exogenous supple-
mentation of IFN, thereby improving the prognosis of SCLC 
patients [142]. However, a study suggests that STING, through 
the TBK1-NF-κB pathway, contributes to the formation of an 
inflammatory microenvironment that promotes bone metas-
tasis in cervical cancer [143]. Moreover, in recurrent gliomas, 
overexpression of STING correlates with IDH1 mutations, sug-
gesting that STING may serve as an independent prognostic 
marker for glioma progression [144-145]. These studies reveal 
the complex role of STING signaling in different cancer types.
Future research should focus on understanding the spatio-
temporal activation mechanisms of STING in both tumor and 
immune cells. Single-cell spatial transcriptomics could particu-
larly reveal its role within the TME [146]. Additionally, exploring 
STING agonists in combination with immune checkpoint inhib-
itors (ICIs) or IL-35 in combination therapies will help improve 
the effectiveness of antitumor immune responses, providing 
more effective treatment options in clinical therapy [132, 147].

Concluding Remarks

The cGAS-STING pathway is a crucial intracellular immune 
signaling pathway, primarily involved in the host's immune 
response to exogenous pathogens (such as viruses and bac-
teria) and responses to endogenous damage. Recent studies 
have shown that, in response to viral and pathogen invasion, 
STING plays a pivotal regulatory role in immune responses 
through various post-translational modifications (PTMs). The 
development of specific probes targeting different PTM states 
of STING could precisely regulate its activity, thereby enhanc-
ing the activation of the downstream TBK1-IRF3 pathway. 
For example, TMED2, in combination with the MITA signaling 
mediator, can further enhance IRF3 activation, improving the 
efficiency of antiviral immune responses [148].
As a key immune response regulatory mechanism, the cGAS-
STING pathway is involved in the regulation of several subcel-
lular organelles, such as the ER and lysosomes, and interacts 
with other intracellular signaling pathways to form a complex 
regulatory network. These organelles play an increasingly 
important role in cellular immune responses, inflammatory re-
actions, and pathogen defense, and their dysfunction is often 
closely associated with the development of various diseases. 
Therefore, exploring how to regulate the functions of these 
subcellular organelles via the cGAS-STING pathway offers new 
perspectives and possibilities for developing nanotechnolo-
gy-based disease therapies. Nanotechnology can precisely tar-
get these intracellular structures, and by activating or inhibiting 
the cGAS-STING pathway, it can influence immune responses, 
opening up new frontiers in disease treatment.
On the other hand, non-coding RNAs (ncRNAs), which have 
been a focal point of research in recent years due to their 
significant roles in gene expression regulation, genome sta-
bility maintenance, and cellular physiological functions, have 
attracted widespread attention. NcRNAs play crucial roles in 

biological development and health maintenance and are also 
closely linked to the onset of various diseases. Increasing 
evidence indicates that ncRNAs regulate the activation and in-
hibition of the cGAS-STING pathway through direct or indirect 
interactions at various levels. For instance, certain microRNAs 
and long non-coding RNAs can modulate the expression or 
stability of cGAS or STING through interactions, thereby affect-
ing the strength and duration of downstream immune respons-
es. These findings provide a theoretical basis for regulating 
the cGAS-STING pathway via ncRNAs and offer new insights 
for the development of novel disease treatment strategies, 
such as gene therapy and immunotherapy. With the integration 
of nanotechnology, future approaches may precisely regulate 
the cGAS-STING pathway through targeting ncRNAs, achieving 
more refined therapeutic outcomes for diseases.
In recent years, the role of the cGAS-STING pathway in auto-
immune diseases has increasingly attracted the attention of 
researchers. However, excessive or abnormal activation of the 
cGAS-STING pathway has been found to be closely associated 
with the onset of various autoimmune diseases, such as SLE, 
Sjögren’s syndrome, and rheumatoid arthritis. Studies have 
shown that when the activation of the cGAS-STING pathway 
becomes uncontrolled, it may lead to the loss of immune tol-
erance, triggering autoimmune responses that result in tissue 
damage and inflammation. Notably, in certain autoimmune 
disease patients, abnormal activation of the cGAS-STING 
pathway can promote the excessive secretion of inflammatory 
cytokines, thereby exacerbating the clinical symptoms of the 
disease.
To address this issue, researchers have been developing inhibi-
tors of the cGAS-STING pathway as potential therapeutic strat-
egies. Inhibitors such as VENT-03 and PAH have been found 
to effectively suppress the abnormal activation of the cGAS-
STING pathway. Notably, the oral drug VENT-03 has completed 
its Phase I clinical trial and is scheduled to initiate Phase II 
clinical trials soon; it is expected to be used in the treatment of 
patients with SLE in the future. By inhibiting the cGAS-STING 
pathway, these inhibitors can significantly alleviate inflam-
mation caused by excessive immune responses and reduce 
tissue damage, thereby mitigating the symptoms of autoim-
mune diseases. Particularly in the treatment of diseases such 
as SLE, inhibition of the cGAS-STING pathway is considered a 
promising strategy, as the abnormal activation of this pathway 
plays a key role in the pathogenesis of these diseases.
In cancer treatment, activating the cGAS-STING pathway to 
counter tumor progression has become a theoretically feasi-
ble approach. However, studies have found that the efficacy 
of using cGAS-STING agonists to combat tumor progression 
is suboptimal [149], and some research even suggests that 
it may further promote tumor progression, highlighting the 
limitations of cGAS-STING agonist monotherapy [132, 150]. 
Activation of the cGAS-STING pathway is crucial for initiating 
the initial anti-tumor immune response. Recent studies have 
shown that persistent activation of the cGAS-STING pathway 
in tumors could induce an immune-suppressive TME, promot-
ing the survival and metastasis of cancer cells. Additionally, 
activation of the cGAS-STING pathway in myeloid-derived sup-
pressor cells (MDSCs) has been shown to participate in the 
recruitment of MDSCs and enhance their immunosuppressive 
activity, thereby promoting TME remodeling [151-153]. Further-
more, while the cGAS-STING pathway may play an anti-tumor 
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role in the early stages of cancer, tumor cells exhibit strong im-
mune evasion capabilities. In the later stages of tumor devel-
opment, the pathway could evolve into a chronic inflammatory 
state. Persistent inflammation could induce immune tolerance 
through mechanisms such as immune cell exhaustion, the 
expansion of regulatory cells, and clonal anergy, thus driving 
tumor progression [154-155]. This suggests that using cGAS-
STING agonists alone to combat tumor progression may not 
be the optimal approach. Furthermore, the mechanisms by 
which sustained activation of the cGAS-STING pathway pro-
motes tumor progression remain a major research question. 
Additionally, current research on the cGAS-STING pathway in 
non-tumor cells of the TME is limited, and the role of this path-
way in non-tumor cells remains unclear. These gaps hinder our 
deeper understanding of tumor mechanisms.
The rise of immunotherapy has opened a new chapter in can-
cer treatment, and the use of cGAS-STING agonists in combi-
nation with ICIs may represent a novel therapeutic approach in 
cancer therapy. A thorough investigation of the mechanisms 
underlying the cGAS-STING pathway in cancer therapy is cru-
cial for advancing personalized treatment approaches, which 
holds significant clinical implications for deepening our explo-
ration of cancer treatments [156-157].
Moreover, in certain diseases, aberrant activation or inhibition 
of the cGAS-STING pathway is not only closely associated with 
the onset of the disease but also plays a crucial role in disease 
progression. For instance, in some autoimmune and chronic 
inflammatory diseases, excessive activation of the cGAS-
STING pathway may lead to an overactive immune response, 
resulting in tissue damage and pathological changes. In cer-
tain viral infections, defects or inhibition of the cGAS-STING 
pathway could impair the host’s immune defenses, enabling 
persistent viral presence. Therefore, the precise modulation 
of the cGAS-STING pathway using specific agonists or inhibi-
tors has become a critical strategy in treating these diseases. 
By regulating the activity of the cGAS-STING, it is possible to 
maintain immune defense while avoiding the side effects of 
excessive immune responses, thereby effectively treating au-
toimmune or chronic inflammatory diseases.
In conclusion, as a central pathway in the innate immune sys-
tem, the cGAS-STING pathway plays an irreplaceable role not 
only in combating exogenous pathogens but also in cancer 
immunity, infections, inflammation, and autoimmune diseases. 
In-depth studies on the role of the cGAS-STING pathway in var-
ious diseases will lead to more precise targeted therapies for 
clinical treatment, promote the development of personalized 
medicine, and provide patients with additional treatment op-
tions. Therefore, investigating how to regulate the cGAS-STING 
pathway across diverse disease contexts will be a pivotal di-
rection in future therapeutic research.
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