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Abstract

Background: The circadian rhythm coordinates multiple physiological and behavioral processes. Substantial evidence illustrates that circadian 
rhythm disruption (CRD) dramatically influences tumor initiation, progression, and the tumor immune microenvironment remodeling. However, 
there is a dearth of exploration for CRD heterogeneity’s underlying clinical significance in lung adenocarcinoma (LUAD).
Methods: 2090 LUAD patients and 79 immunotherapy patients were enrolled from nine public independent datasets. The nonnegative matrix 
factorization (NMF) was applied to develop molecular classification after collecting CRD-related genes. Subsequently, the reliability and 
robustness of classification were evaluated through the nearest template prediction (NTP) method. Furthermore, clinical outcomes, functional 
characteristics, genomic alterations, and immune landscape were explored. The efficacy of clinical common treatment was detected for the 
specific classification. 
Results: Three heterogeneous LUAD subtypes were identified based on the expression profile of CRD-related genes. Different expression 
characteristics and clinical outcomes of distinct subtypes were revealed. Relative similar clinical outcomes and proportion of each subtype 
were verified in multiple independent cohorts, which indicated the reliability of classification. Distinguish features of three subtypes were further 
explored: (i) C1, the poorest prognosis, significant cell proliferation, and highest genomic instability. (ii) C2, the best outcome, elevated lipid 
metabolic function, favorable regulation of circadian rhythm, and (iii) C3, copious immune infiltration, immunosuppressive microenvironment, and 
conspicuous intratumor heterogeneity. The evaluation of treatment strategies suggested that C1 patients might benefit from chemotherapeutics 
agents, including docetaxel and paclitaxel, patients in C2 were suitable for glucocorticoids, whereas C3 patients were recommended to accept 
immunotherapy.
Conclusions: We identified three CRD subtypes with distinct characteristics, including clinical outcomes, biological function, genomic alterations, 
and immune landscape. For individualized subtypes, befitting therapy approaches were proposed. Our study could provide more efficient and 
precise management to LUAD patients.
Keywords: Circadian Rhythm Disruption, Lung Adenocarcinoma, Molecular Subtype, Immunotherapy, Tumor Immune Microenvironment.
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Mapping heterogeneous molecular subtypes of circadian 
misalignment underlying lung adenocarcinoma risk

Introduction

Lung adenocarcinoma (LUAD) is the most predominant 
type of lung cancer, with a high invasion and mortality 

rate. [1] Presently, with a thorough understanding of LUAD 
development, earlier diagnosis, earlier detection, and 
diverse treatments were conducted for patients. However, 
dismal median overall survival (OS) and 5-year survival 
rates of LUAD patients persist. [2] Moreover, substantial 
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prognostic differences exist in LUAD patients with similar 
clinical characteristics, which indicated unsatisfactory 
risk stratification ability of traditional clinical classification 
strategy based on clinicopathological characteristics. [3-
5] It is inevitable for clinical workers to deduce the tumor 
heterogeneity and develop a novel stratification approach to 
improve prognosis and treatment efficacy[6].
The circadian rhythm is a vital biological mechanism in almost 
all organisms, which coordinates multiple physiological and 
behavioral processes through the construction of the circadian 
clock. [7, 8] In recent years, mounting research demonstrate 
circadian rhythm disruption (CRD) and altered hub circadian 
genes expression are l inked to abnormalit ies in cell 
metabolism, cell proliferation, tumor microenvironment (TME), 
and intratumoral heterogeneity, which contribute to cancer 
development and progression. [9-11] For instance, enhanced 
stemness of tumor cells and an immunosuppressive TME 
were detected in breast cancer mice with chronic circadian 
disruption. [12]A previous study revealed the existence of 
intratumoral heterogeneity and related resistance to anti-
cancer treatments in LUAD patients with CRD based on 
single-cell RNA-seq analysis. Besides, Ruan et al. indicated 
that CRD was a potential target to facilitate the anti-tumor 
therapeutic efficacy. [13] With the continuous advancements 
in circadian rhythm research, several CRD-related genes have 
been detected, such as BMAL1, CLOCK, PER, and CRY.[14, 15] 
Nevertheless, the relationship among CRD status, molecular 
characteristics, and clinical outcome in LUAD remains to be 
elucidated. 
Besides, with the advancement of tumor research, plentiful 
effective therapies have been developed (e.g., chemotherapy, 
radiation therapy, targeted therapy, and immunotherapy)
[5]. Due to the provision of diverse treatment options, the 
need for individualized treatment and precision medicine 
ensues. [5, 16] Obviously, a traditional therapy strategy with an 
insufficient understanding of molecular characteristics was 
powerless for this requirement. [17-19] Thus, individualized 
comprehensive treatment which included novel approaches, 
such as immunotherapy and targeted therapy, was barged 
to the forefront. [20, 21] However, an effective and rational 
classification is the essential prerequisite to determining 
the appropriate treatments. Therefore, it is warranted to 
identify CRD status heterogeneity and propose new insights 
for molecular classification, which could offer proper clinical 
management and precision medicine to LUAD patients. 
In our present study, we aimed to address a significant 
clinical gap in the stratification of LUAD patients by identifying 
three heterogeneous subtypes based on the expression of 
CRD-related genes. By utilizing six independent databases, 
we validated the robustness of the CRD-related subtypes, 
demonstrating consistent relative fractions, gene expression 
prof i les ,  and prognost ic  outcomes across cohor ts. 
Furthermore, we explored the distinct differences among the 
three subtypes from multiple perspectives, including biological 
functions, genomic variations, and tumor microenvironment 
(TME) characteristics. This comprehensive approach allowed 
us to illustrate how CRD-based classification uniquely adds 
clinical value compared to existing biomarkers. We also 
assessed patients' sensitivity to common clinical therapies, 
which is essential for advancing personalized medicine 
strategies. Overall, our findings suggest that LUAD patients 

may benefit from more efficient and precise management 
if our promising CRD-based stratification platform is 
implemented in clinical practice.

Method

Data acqui sition and procession
In this study, LUAD cohorts were collected from The Cancer 
Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) 
dataset according to the following inclusion criteria: 1. 
Patients were primary lung adenocarcinoma. 2. The number 
of patients is more than 100. 3. Patients in the dataset have 
complete gene expression profiles and corresponding survival 
information. 4. The probe and gene ID were clearly labeled, 
with more than 20000 genes. Finally, 2090 patients from 
TCGA-LUAD (n = 497), GSE72094 (n = 442), GSE68465 (n = 
462), GSE50081 (n = 127), GSE42127 (n = 133), GSE41271 (n 
= 183) and GSE31210 (n = 246) were included. The expression 
profile and clinical information of the TCGA-LUAD cohort were 
from UCSC Xena portal. The expression data were converted 
from fragments per kilobase of million mapped reads (FPKM) 
transcripts to trans per million (TPM) format and log2 
transformed. The remaining cohorts were retrieved from GEO, 
normalized, and processed using Affy and Lumi packages 
based on different platforms subsequently[22]. Furthermore, 
TCGA-LUAD somatic mutation and segmented copy number 
variation data were received from the TCGA portal. Across all 
cohorts, the expression of each gene was converted into a 
Z-score value before model construction. 

Development and validation of CRD-related subtypes
With the help of previous studies, we retrieved a total of 2091 
circadian rhythm disruption-related genes from CircaDB and 
MSigDB for the development of CRD-related subtypes (Table 
S1). [23] Nonnegative matrix factorization (NMF) algorithm 
was applied to identify the optimal number of consensus 
clusters from the TCGA-LUAD cohort through the NMF 
package. After decomposing the nonnegative matrix of CRD-
related genes and iterating, the cophenetic coefficient was 
executed to determine the optimal factorization rank. The 
identification criteria were as follows: possible factorization 
ranks = 2 – 7, number of iterations = 100, and method = "lee". 
In general, the rank before the most obvious decrease of the 
cophenetic coefficient value was considered to be the optimal 
rank. [24] Then, Partial Least Squares Discriminant Analysis 
(PLS-DA) was applied to evaluate the separation of three 
subtypes. PLS-DA was A linear classification method that uses 
partial least squares regression to identify latent variables that 
maximize class separation. It is particularly effective in high-
dimensional data settings. The limma package was used to 
decipher the differences among distinct CRD-related subtypes 
and obtain signature genes for each subtype (log2 fold change 
(log2 FC) > 1 and adjust P value < 0.05 ). A flexible technique, 
the nearest template prediction (NTP), was a helpful tool to 
assess class prediction confidence for single patient. [25, 26] 
Using signature genes, we implemented the NTP algorithm 
with the CMScaller package to evaluate the stability and 
robustness of clusters across multiple GEO validation cohorts 
from different platforms. An FDR threshold of less than 0.05 
was applied to establish appropriate classification confidence 
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thresholds.

Exploring specific biological characteristics of three subtypes
To further explore the biological functional heterogeneity 
among the three subtypes, we conducted the gene set 
variation analysis (GSVA), which was widely applied to 
evaluate the activity of pathways.[5, 27] GSVA was a method 
used to assess variability in gene sets across samples or 
conditions. GSVA transforms gene expression data into 
enrichment scores for gene sets, helping to reveal changes 
in the activity of biological processes or signaling pathways. 
Differentially expressed genes (DEGs) were analyzed by limma 
package and the expression matrix was obtained by arranging 
all genes in descending order according to log2 FC. Based on 
this matrix and gene sets from Gene Ontology (GO), the Kyoto 
Encyclopedia of Genes and Genomes (KEGG), and HALLMARK, 
the GSVA package was implemented to determine specific 
biological characteristics between each subtype and the 
others. Meanwhile, the gene set enrichment analysis (GSEA) 
algorithm was performed to exhibit CRD-related pathway 
activities through the clusterProfiler package.

Somatic mutation and copy number variation analysis
The maftools package was applied for processing and 
visualizing the genomic alteration data. Based on CNV data 
obtained from GISTIC 2.0 pipeline, the burden of copy number 
alteration, including amplification and deletion, was quantified 
at focal and arm levels. We also calculated the fraction of 
genome alteration (FGA), fraction of genomic gained (FGG), 
and fraction of genome lost (FGL) to evaluate genetic changes 
in three CRD-related clusters.

Depicting distinct immune landscape and evaluating 
Immunotherapy
For deciphering features of the tumor immune infiltration, 
single-sample gene set enrichment analysis (ssGSEA) was 
exploited for the quantification of 28 immune cell subsets[28]. 
Besides, GSVA package was conducted to evaluate the relative 
infiltration of 24 TIME cells. Six other algorithms including 
ESTIMATE, TIMER, quantTIseq, MCP counter, EPIC, and xCell 
were further implemented to verify the stability and reliability 
of the results. Meanwhile, the assessment of immunogenicity 
and immunosuppression status was accomplished by 
computing Immunophenoscore (IPS) and novel S score 
respectively (Table S2). [29] The IPS of TCGA-LUAD patients 
was acquired from the cancer-immune group atlas (TCIA, 
https://tcia.at/home). Human leukocyte antigen (HLA) 
molecule expression was compared to assess the antigen 
presentation ability of three subtypes [30]. A range of immune 
escape-related signatures was collected and estimated to 
reveal underlying distinct immune escape mechanisms among 
three subtypes. [31] 
For distinct subtypes, immune checkpoint molecules (ICM) 
expression, T cell inflammatory signature (TIS), and subclass 
mapping (Submap) algorithm were employed to deduce 
immunotherapeutic efficacy. A total of 27 ICM were enrolled, 
including the B7-CD28 superfamily, TNF superfamily, and 
eight other molecules. [32] As a signature obtained based on 
ssGSEA algorithm for 18 inflammatory genes, TIS could play 
a predictor of the response to PD-1 inhibitors. GSEA was an 
extension of traditional gene set enrichment analysis that 

evaluates the enrichment of gene sets in individual samples. 
Unlike GSEA, ssGSEA provides specific scores for each 
sample, allowing for the analysis of subtle differences between 
samples [33-35]. A higher TIS score represents a better 
response to PD-1 inhibitors. Moreover, the Submap algorithm 
was utilized to estimate the similarity between the three 
phenotypes and the patients with different immunotherapy 
responses from two independent immunotherapy cohorts. 

Personalized management for distinct subtypes
Among the considerable number of published LUAD 
signatures, we aimed to identify an optimal signature tailored 
for distinct subtypes to facilitate personalized management. 
In our research, we retrieved a total of 151 published 
signatures that were based on various biological processes 
[36]. To strengthen the rationale for their use, we employed a 
systematic approach that included univariate Cox regression 
analysis, followed by a comparison of the concordance index 
(C-index) across these candidates. This allowed us to identify 
and prioritize the superior prognostic signatures for each 
subtype.

Statistical analysis
All data processing, plotting, and statistical analysis were 
conducted in R 4.1.2. Cox regression and Kaplan–Meier 
analyses were performed via the survival package. The 
comparison of the survival of categorical variables was 
completed through the log-rank test. Kruska-Wallis test was 
applied to compare the difference among the three clusters. 
A two-sided P < 0.05 was considered a statistical significance 
for all statistical tests.

Results

Identification of three CRD-related subtypes 
Based on expression profiles of 2091 CRD-related genes, 
the NMF approach was applied to decode heterogeneous 
phenotypes. We selected three subtypes as the optimal rank 
based on the cophenetic coefficient score and consensus 
matrix (Figure 1A, S1A). Meanwhile, PLS-DA exhibited the 
obvious separation of three distinct subtypes (Figure 1B). We 
further explored the prognostic value of CRD-related subtypes 
to boost their practice in the clinic. For three subtypes called 
C1, C2, and C3, C2 displayed better overall survival (OS), while 
C1 harbored a dismal prognosis (Figure 1C).

Validation of CRD-related subtypes
To further demonstrate the stability and reliability of CRD-
related subtypes, NTP analysis was performed in five 
independent cohorts, including GSE72094, GSE68465, 
GSE41271, GSE50081, GSE42127, and GSE31210 (Figure 1D-
F, S1B-D). Signature genes for NTP were defined as specific 
upregulated DEGs in the individual subtype. Corresponding 
with a previous study, patients with a false discovery rate (FDR) 
of more than 0.05 were eliminated in subsequential analysis. 
Then, a resemblant proportion of three clusters in divergent 
datasets was exhibited, which hinted stability of CRD-related 
subtypes (Figure 2A). Moreover, we evaluated the difference in 
clinical outcomes for distinct subtypes through Kaplan-Meier 
curves in validation cohorts (Figure 2B-F, S2A). Relatively 

*1
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Figure 1 Identification and validation of CRD-related subtypes by nonnegative matrix factorization (NMF) analysis. 
(A) Consensus map generated from NMF clustering analysis of The Cancer Genome Atlas-Lung Adenocarcinoma (TCGA-LUAD) cohort. (B) 
Two-dimensional principle component plot of three CRD-related subtypes in the TCGA-LUAD cohort. (C) Kaplan–Meier curves of overall survival 
according to three subtypes in the TCGA-LUAD cohort. (D-F) Heat maps depicting the expression levels of template features among three 
subtypes in the GSE72094, GSE68465, and GSE41271 cohorts.

A
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Figure 2. Similar proportions and heterogeneous overall survival rates in the three subtypes. 
(A) Proportions of three subtypes among seven cohorts from distinct platforms. (B-F) Kaplan–Meier curves of overall survival rates for three 
subtypes in the GSE41271, GSE72094, GSE42127, GSE68465, and GSE31210 cohorts.

A
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speaking, C2 subtypes possessed the most favorable OS (P 
< 0.05), whereas C1 exhibited the most frustrating OS, which 
was consistent with the above findings. Taken together, CRD-
related subtypes were stable and robust in LUAD patients and 
revealed discrepant clinical prognoses.

Underlying biological functional processes linked to three 
subtypes
Based on GO, KEGG, and HALLMARK, enrichment analysis 
was performed to decode specific biological functions of 
LUAD patients in distinct subtypes. As illustrated in Figure 3A, 
significantly activated proliferation pathways were revealed 
in C1, including cell cycle, DNA replication, and E2F targets. 
C2 possessed a high correlation with lipid metabolisms such 
as bile acid metabolism and fatty acid metabolism. Notably, 
positive regulation of the circadian sleep-wake cycle was 
detected in C2 patients (Figure 3B), which demonstrated a 
healthy circadian rhythm. For tumor patients with CRD, clock 
ablation supports glycolysis and fatty acid synthesis, which 
was the signature of proliferative metabolism. Consistent 
with that, patients in C1 displayed negative regulation of 
the circadian sleep-wake cycle (Figure S2B), which signified 
its CRD status. However, elevated lipid metabolism activity 
impeded such a metabolism change, which coincided with 
depressed proliferation pathways in C2. Meanwhile, we 
observed C3 mainly harbored enhanced immune response and 
up-regulated signaling pathways of immune factors including 
cytokine, chemokine, and complement. Therefore, C3 was 
characterized as immune LUAD. Analogously, we defined C1 
as proliferative LUAD and C2 as lipid-metabolic LUAD.

Genomic alterations of three distinct subtypes
By displaying and comparing the mutation frequency of the top 
20 mutant genes in three subtypes, we detected C1 patients 
possessed the highest mutated frequency, especially TP53 
and TTN mutations (Figure 4A). Meanwhile, an overview of 
single-nucleotide polymorphism (SNP), insertion and deletion 
(INDEL), and tumor mutation burden (TMB) were displayed to 
describe somatic variants comprehensively. C1 demonstrated 
the richest somatic mutations, which was consistent with the 
result of mutated frequency (Figure 4A). As a general mutation 
in LUAD, TP53 mutation conferred more vigorous malignant 
proliferation and poorer prognosis to patients. [37-39] In line 
with that, a significantly higher stemness index of C1 was 
indicated, which represented powerful malignant proliferation 
ability (Figure S2C). C2 had lower somatic mutation compared 
to other subtypes, implying better outcomes. A comparison 
of CNV in three CRD-related subtypes was also performed to 
further decode genomic alterations. Strikingly, C1 harbored 
obvious CNV at bases, fragments, and chromosome levels, 
which suggested a higher likelihood of cell proliferation and 
immune escape (Figure 4B). [40] Overall, prominent genomic 
alterations were revealed for patients in C1, suggesting a 
subtype with high genomic instability.

The depiction of immune infiltration and immune escape 
landscape 
Immune infiltration and immune escape play an essential 
role in tumorigenesis and the development and prognosis of 
patients. Therefore, we depicted the landscape of immune 
infiltration and immune escape in three heterogeneous 

subtypes. Firstly, we quantified the relative abundance of 28 
immune cells in three subtypes. Consistent with our results 
through multiple algorithms, C3 showed a more abundant 
immune-cell infiltration than the other two subtypes (Figure 
5A, Figure S2D). However, IPS and the S score hinted lowest 
immunity and conspicuous immunosuppression of C3 
patients, which might be associated with elevated infiltration 
of immunosuppressive cells, such as MDSC, Treg, and Th17. 
Conversely, C2 possessed vigorous immunity and the least 
immunosuppression (Figure 5B-C). Besides, we explored 
underlying mechanisms of immune escape for the three 
subtypes. Among the three subtypes, C3 exhibited the highest 
expression of HLA molecules, which represented superior 
power for antigen presentation, while C1 displayed the 
deficient capability to present antigen (Figure 5D). Furthermore, 
a spectrum of immunogenicity indicators was evaluated, 
including neoantigen load (single nucleotide variant (SNV) and 
indel neoantigens), cancer/testis-antigens score (CTA Score), 
and genomic instability-related indicators. As illustrated 
in Figure 5E, C1 owned a high level of immunogenicity but 
insufficient antigen processing and presentation capabilities, 
including TCR Richness and Shannon. Meanwhile, C2 and C3 
showed lower immunogenicity, and C3 showed the highest 
intratumor heterogeneity (ITH) specifically. Taken together, 
inadequate immune cell infiltration and deficient antigen 
procession and presentation capacity were the main immune 
escape mechanism for the C1 subtype. The absence of 
immunogenicity might be responsible for immune escape in 
C2. For C3, copious infiltration of immunosuppressive cells, 
high level of ICI expression, and ITH contributed to immune 
escape.

The assessment of response to immunotherapy
Immunotherapy is recommended for clinical treatment 
because of its good efficacy and fewer side effects. 
Therefore, we evaluated the benefit of immunotherapy in CRD-
related subtypes to further guide the clinical application of 
immunotherapy approaches. Notably, C3 harbored the highest 
level of immune checkpoints (Figure 6A), which suggested 
the benefit of immune checkpoint inhibitors (ICIs). We further 
enrolled TIS and Submap algorithm to evaluate the efficacy of 
immunotherapy. As expected, C3 had the highest TIS score, 
indicating that it was more likely to benefit from ICI treatment 
(Figure 6B). In line, in two independent immunotherapy cohorts, 
C3 showed an expression profile that was more similar to 
that of patients who responded to anti-PD-1 treatment (both 
Bonferroni corrected and Nominal P value < 0.05) (Figure 6C). 
In conclusion, immunotherapy was a recommended treatment 
modality for patients in C3.

Potential drug development
To facilitate the personalized treatment of each subtype, we 
used the pRRophetic package to evaluate the half-maximal 
inhibitory concentration (IC50) of potential sensitive drugs for 
C1 and C2 subtypes based on drug sensitivity data from CTRP 
and PRISM databases. For common clinical chemotherapeutic 
agents such as docetaxel and paclitaxel, C1 patients displayed 
better sensitivity, suggesting an effect of chemotherapy 
(Figure 6D, Figure S2E). Meanwhile, C2 patients may benefit 
more from corticosteroids, including dexamethasone and 
prednisone (Figure 6E, Figure S2F).
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Figure 3. Biological function landscape of distinct CRD subtypes.
(A) The activation states of GO, KEGG, Hallmark pathways of distinct CRD subtypes in the TCGA cohort. (B) Enrichment plots depicted by gene 
set enrichment analysis based on CRD-related gene sets from GO and KEGG.

A
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Figure 4. Genomic alterations of the CRD subtypes.
(A) The waterfall plot depicted the differences in frequently mutated genes (FMGs) of  among three subtypes. (B) Distributions of fraction of 
genome alteration (FGA), fraction of genomic gained (FGG), fraction of genome lost (FGL), arm gain, arm loss, focal gain, and focal loss.

A
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Figure 5. Immune landscape of distinct CRD subtypes.
(A) Box plot of infiltration abundance for 28 immune cell subsets analyzed by a single-sample gene set enrichment algorithm. (B) Distribution 
difference of Immunophenoscore among three subtypes. (C) S score distribution across three subtypes. (D) Distribution of nine human leukocyte 
antigen molecular expressions among three subtypes. (E) Heat map of tumor underlying immune escape mechanisms among three subtypes.

A
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Figure 6. Potential treatment strategies and clinical delicacy management. 
(A) Heatmap of twenty-seven immune checkpoint profiles across three subtypes. (B) Variations in the distribution of T cell inflammatory signature 
prediction scores among three subtypes. (C) Immunotherapy responses of three subtypes from Submap analysis. (D, E) Potential sensitive drugs 
for C1(D) and C2(E). (F) The C-index of published prognostic models in the TCGA-LUAD cohort.

A
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Clinical delicacy management
Technologies of next-generation sequencing and machine 
learning have flourished, which provided a powerful basement 
for the development of prognostic tools. Several prognostic 
signatures were constructed and validated to aid clinical 
decisions. After a systematic search of the published literature, 
a total of 151 LUAD prognostic signatures based on ample 
biological processes and robust machine-learning algorithms 
were collected. In the TCGA-LUAD cohort, the risk score of 
each model was recalculated for all patients and appraised 
their efficiency via the C-index (Figure 6F). Interestingly, Chen 
EG (2017) possessed the most accurate discrimination for 
both C1 (C-index = 0.741) and C2 (C-index = 0.698) patients. 
[41] Therefore, the model was suitable to predict their 
prognosis to optimize clinical management. Similarly, Ma B 
(2020) was the optimum signature for patients in C3 (C-index 
= 0.796). [42]

Discussion

The heterogeneity of LUAD, which contributes to elusive 
prognosis and treatment sensitivity [43], continues to perplex 
clinicians and researchers. Considering the critical role of 
CRD in tumorigenesis and progression [44], it is essential for 
LUAD patients to accept proper stratification strategies based 
on CRD status, which helps with delicacy management and 
personalized treatment. As far as we know, deficiency has 
hitherto existed in CRD molecular heterogeneity research 
for LUAD. In this study, heterogeneous CRD subtypes were 
identified and systematically analyzed specific characteristics 
from multiple perspectives, including biological function, 
immune landscape, and genomic alteration. These results 
could improve our understanding of CRD and refine clinical 
management and personalized treatment.
We identified three CRD-related subtypes through the NMF 
algorithm. The reliability and stability of the three subtypes 
were validated in multiple ways. As an efficient tool, the NTP 
algorithm was applied to assess the stability of subtypes 
through the specific DEGs expression profile. Finally, similar 
specific gene expression profiles, proportions, and prognoses 
of each subtype were demonstrated in six independent GEO 
cohorts, suggesting the rationality of CRD-related subtypes. As 
displayed, C1 possessed the worst prognosis, C2 owned the 
best outcome, and the OS of C3 was between C1 and C2. 
As described, there was distinct heterogeneity of biological 
functions in three subtypes. C1 was depicted by activated 
proliferation pathways, C2 was characterized by enrichment of 
lipid metabolic, whereas C3 was distinguished by prominent 
association to immune-related function. Besides, C1 displayed 
negative regulation of the circadian sleep-wake cycle. In 
contrast, C2 was enriched in the regulation of the circadian 
sleep-wake cycle. Notably, the CRD status of the three 
subtypes revealed similar trends with their prognosis. Besides, 
genomic characteristics of diverse genomic characteristics. 
C1 possessed the most profound genomic instability from 
analyses of both somatic mutation and CNV. Previous 
research revealed that TP53 mutations were associated with 
active DNA damage repair (DDR) and elevated cell proliferation 
levels [45, 46]. Besides, an increased risk of immune escape 
and dismal prognosis appeared with additional TP53 mutation 

[47]. Correspondingly, with the highest TP53 mutation, C1 
presented enrichment in proliferation pathways and a poorer 
prognosis. Besides, we explored the immune landscape to 
further depicted the heterogeneous immune microenvironment 
of three subtypes. As illustrated, C3 possessed conspicuous 
immune cell infiltration and antigen presentation ability, 
which was consistent with the “immune-hot” phenotype. 
Moreover, the assessment of immune escape mechanisms 
demonstrated that C1 may achieve immune escape primarily 
due to insufficient TCR richness and TCR Shannon diversity; 
C2 appears to rely on deficient immunogenicity; and C3 likely 
utilizes a mechanism driven by high intratumor heterogeneity. 
As described above, C1 displayed negative regulation of 
the circadian sleep-wake cycle, suggesting CRD status. For 
LUAD patients, systemic and somatic disruption of circadian 
rhythms contribute to enhanced proliferation and metabolic 
dysregulation, which resulting in cancer progression and 
related poor prognosis [48]. Besides, recent research provided 
evidence that CRD promoted genomic instability in LUAD 
patients[49], which was consistent with our findings in the C1 
subtype. Nevertheless, the specific regulatory relationships 
among CRD, genomic instability and TP53 mutation still need 
to be further studied. Notably, CRD-related lipid metabolic 
dysregulation was a significant factor for tumor invasion and 
TME remodeling [50]. However, for C2 with relative healthy 
circadian rhythms, undisturbed lipid metabolism made a 
contribution for relatively good prognosis. 
As is well acknowledged, it’s crucial and essential to provide 
individualized treatment. Development and clinical application 
of tumor immunotherapy, especially immune checkpoint 
inhibitor (ICI) therapy, has revolutionized treatment patterns 
in LUAD. As humanized monoclonal antibodies for blocking 
immune checkpoints (such as CTLA-4 and PD-1), ICI works 
by restoring effective immune cell function. [51, 52] C3, the 
“immune-hot” subtype, harbored abundant immune cell 
infiltration and higher expression of immune checkpoints, 
such as CD8+ T cell, CD4+ T cell, CD274 (PD-L1), PDCD1, and 
CTLA-4 molecular. Meanwhile, together with the highest TIS 
score and similar characteristics with patients who respond 
to ICIs, C3 was thought to derive potential benefits from 
ICIs treatment. Due to the heterogeneity of LUAD, ill-fitted 
chemotherapeutic caused additional side effects, which was 
severe challenges for LUAD patients. Our study suggested 
that C1 patients with significant TP53 mutation and increased 
proliferative activity may have better efficacy with two 
kinds of important chemotherapeutic drugs, docetaxel and 
paclitaxel. In addition, for C2 patients, glucocorticoids were 
recommended for their potential effect on adverse events for 
LUAD. Finally, we included 151 LUAD prognostic signatures to 
boost clinical management. The 21-gene model of Chen EG 
possessed the highest accuracy for both C1 and C2 and the 
16-gene model of Ma B exhibited the best discrimination for 
C3 patients, implying their excellent ability to be applied for 
prognostic management to individual subtypes.
Several limitations need to be acknowledged in the present 
study. Firstly, the clinical information was incomplete for 
some patients in public datasets, which contribute to potential 
bias. Then, we focused on inter-tumor heterogeneity from the 
bulk RNA sequencing data, further intra-tumor heterogeneity 
studies haven’t been considered from the single cell level. 
Additional experimental and validation data for the biological 
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pathway characterizations associated with each subtype were 
meaningful. At last, further clinical validation for sensitivity 
to immunotherapy and specific drugs predicted by machine 
learning algorithms was still needed.
In conclusion, we revealed three heterogeneous CRD subtypes 
in LUAD. Among the three subtypes, different survival times, 
biological features, genomic alterations, immune landscape, 
and treatment responses were spotted. Our work provided a 
promising classification platform and individualized treatment 
strategies, which would be helpful for clinical management. 
Based on RNA sequencing results, clinicians can gain insights 
into the characteristics of different subtypes, enabling 
accurate classification and targeted treatment.
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