
Research Article Life Conflux

https://doi.org/10.71321/p63ws623

© 2025 Published by Life Conflux Press Limited. All rights reserved. L. Conflux. Vol. 1, No. 2 (2025)

Unraveling the Role of Anoikis in Non-Alcoholic Fatty Liver 
Disease Progression and Immune Cell Infiltration

Authors
Yuming Wang, Xinqiang Li, Jijun Shan, Ruidong Ding, Jinzhen Cai

Graphical Abstract

Correspondence
caijinzhen@qdu.edu.cn (J. Cai)



Research Article Life Conflux

Yuming Wang 1,2 , Xinqiang Li 1,2 , Jijun Shan 3 , Ruidong Ding 1,2 , Jinzhen Cai 1,2*

Received: 2025-01-16丨 Accepted: 2025-03-23丨 Published online: 2025-03-30

Abstract

Background: Non-alcoholic fatty liver disease (NAFLD) is a prevalent chronic liver disease with complex molecular mechanisms. Anoikis, a 
distinct form of programmed cell death, has been implicated in disease progression, but its specific role in NAFLD remains unclear. This study 
aims to identify anoikis-related molecular clusters, explore their immune characteristics, and construct a predictive model for NAFLD prognosis.
Methods: Gene expression profiles of NAFLD samples were obtained from the Gene Expression Omnibus (GEO) database. Weighted gene co-
expression network analysis (WGCNA) was applied to identify cluster-specific differentially expressed genes. Immune infiltration analysis was 
conducted to evaluate the association between anoikis-related clusters and immune cell composition. Machine learning was used to screen 
feature genes, and a predictive model was developed. The model’s performance was assessed using nomograms, calibration curves, and 
decision curve analysis (DCA).
Results: Two distinct anoikis-related molecular clusters were identified, each exhibiting unique immune microenvironment characteristics. 
Cluster 1 showed higher levels of CD8 T cells, γ-delta T cells, and macrophages (M1 and M2), while Cluster 2 had increased monocytes, activated 
dendritic cells, and neutrophils, reflecting inflammatory heterogeneity. Four key genes (TMEM169, THBS1, ASIP, and BRCA1) were identified 
through machine learning and incorporated into a predictive model. The model’s accuracy in predicting NAFLD prognosis was confirmed through 
nomograms, calibration curves, and DCA. 
Conclusion: This study established an anoikis-related prognostic model for NAFLD and identified key genes involved in disease progression. The 
findings provide novel insights into the interplay between anoikis, immune responses, and NAFLD, offering potential biomarkers and therapeutic 
targets for personalized treatment.
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Unraveling the Role of Anoikis in Non-Alcoholic Fatty Liver 
Disease Progression and Immune Cell Infiltration

Introduction

Non-alcoholic fatty liver disease (NAFLD), characterized by 
inflammation, has rapidly emerged as the leading cause 
of chronic liver disease globally[1]. Because of the rising 
incidence of metabolic syndrome, obesity, and diabetes 
worldwide, NAFLD now affected approximately one-quarter 
of the global population[2]. Regional variations exist, with the 
highest prevalence observed in the Middle East (32%) and 
South America (30%), followed by North America and Europe 
(24%), Asia (27%), and the lowest in Africa (13%) [3]. NAFLD 
is defined as a spectrum of diseases where more than 5% of 
hepatocytes exhibit steatosis alongside metabolic risk factors, 
notably obesity. NAFLD represents the hepatic manifestation 
of metabolic syndrome and is classified histologically 
into nonalcoholic fatty liver (NAFL) and nonalcoholic 
steatohepatitis (NASH)[4]. Despite extensive research, 
the pathogenesis of NAFLD remains poorly understood, 
underscoring the urgent need for reliable biomarkers for its 

diagnosis.
Apoptosis, a fundamental organismal defense mechanism, 
curtails abnormal cell proliferation by preventing the 
reattachment of detached cells[5].  Emerging studies 
highlighted the significant role of apoptosis in NAFLD 
[6–8]. Anoikis, a specific form of apoptosis triggered by cell 
detachment from the extracellular matrix (ECM), is critical for 
tissue homeostasis and development, originally identified in 
endothelial and epithelial cells.
The regulatory mechanisms underlying anoikis in NAFLD 
remain elusive, warranting further investigation. In this 
context, we conducted a comprehensive analysis utilizing 
publicly available databases and bioinformatics tools to 
identify anoikis-related genes (ARGs) implicated in NAFLD 
onset and progression. Subsequent analyses focused on the 
regulatory networks of ARGs and their associations with the 
immune microenvironment. This research aims to elucidate 
the function of ARGs in NAFLD and identify novel therapeutic 
targets.
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Methods and Materials

Data collection and processing
The datasets GSE66766, GSE89632, and GSE126848 were 
obtained from the Gene Expression Omnibus (GEO) database 
(http://www.ncbi.nlm.nih.gov/geo/). GSE66676 was generated 
using the GPL66244 platform and comprised 67 samples, 
including 34 normal liver tissue controls and 33 NAFLD tissue 
samples. The GSE89632 dataset, based on the GPL14951 
platform, contained 63 samples, of which 24 were normal 
liver controls and 39 were NAFLD tissue samples. All samples 
were included in the current analysis, with quality control 
ensuring the removal of samples with >10% missing values 
or low-quality metrics, such as inadequate signal intensity or 
inconsistent replicates. Additionally, GSE126848, utilizing the 
GPL14877 platform, included 57 samples, consisting of 26 
normal liver controls and 31 NAFLD tissue samples, and was 
employed as the validation set in this study. Batch effects 
in the integrated datasets (GSE66676 and GSE89632) were 
adjusted using the "SVA" package, employing parameters that 
accounted for known covariates, such as platform differences. 
Missing values in the datasets were imputed using k-nearest 
neighbor (KNN) imputation. A power analysis was performed 
to confirm the adequacy of sample sizes, ensuring statistical 
reliability for downstream analyses.

Evaluating the immune cell infiltration
CIBERSORT was employed using the LM22 signature matrix 
to estimate the immune cell subtype composition for each 
sample based on gene expression profiles. The p-value for 
each sample was calculated using Monte Carlo sampling to 
assess the statistical significance of the deconvolution results. 
Differences in immune cell abundance between groups were 
evaluated using the Wilcoxon rank-sum test. In this study, a 
p-value < 0.05 was considered statistically significant.

Correlation analysis of ARGs and immune cell infiltration
To further validate the association between ARG expression 
and immune cell characteristics related to NAFLD, the 
correlation between ARG expression levels and the relative 
proportions of immune cells was analyzed. Spearman’s 
correlation coefficient and the corresponding p-value were 
calculated to assess the strength and significance of the 
associations, with a p-value < 0.05 considered statistically 
significant. The results were visualized using the 'corrplot' R 
package (version 0.92). 

Unsupervised clustering of NAFLD patients
Anoikis-related genes (ARGs) were retrieved from the 
GeneCard database (ht tps ://www.genecards.org/) , 
resulting in a consistent set of 422 genes across all cohorts 
(Supplementary Table 1). To investigate the molecular 
heterogeneity of non-alcoholic fatty liver disease (NAFLD), an 
unsupervised clustering analysis was performed based on the 
expression profiles of seven cuproptosis-associated genes 
with significantly altered expression. This analysis, conducted 
using the k-means algorithm across 1000 iterations, classified 
50 NAFLD samples into distinct clusters. The maximum 
number of subtypes was set at k = 9, and the optimal number 
of subtypes was determined using a combination of the 

cumulative distribution function (CDF) curve, consensus matrix, 
and consensus cluster score (>0.9). Principal Component 
Analysis (PCA) further demonstrated distinct anoikis-related 
patterns across the subtypes, with the results visualized using 
the ‘ggplot2’ package.

Gene set variation analysis (GSVA) analysis
The enrichment analysis of different ARG clusters was 
conducted using the GSVA R package (version 2.11). For 
further GSVA analysis, the ‘c2.cp.kegg. v7.4.symbols’ and ‘c5.
go.bp.v7.5.1.symbols’ files were obtained from the MSigDB 
database. Differentially enriched pathways and biological 
functions between ARG clusters were identified by comparing 
GSVA scores, using the ‘LIMMA’ R package (version 3.52.1) to 
assess statistical significance.

Weighted gene co-expression network analysis (WGCNA)
Based on gene clustering, weighted gene co-expression 
network analysis (WGCNA) was applied to identify highly 
correlated gene modules in NAFLD samples across gene 
subgroups [9]. Concurrently, WGCNA was performed on the 
combined dataset of normal and NAFLD samples to identify 
shared gene modules. By intersecting the results from 
disease-specific WGCNA and anoikis-related gene WGCNA, we 
identified NAFLD gene modules significantly associated with 
anoikis. The "good Samples Genes" function was employed 
to filter out low-quality genes and samples. An appropriate 
soft-thresholding power (β) was selected to compute the 
adjacency matrix, ensuring scale-free topology. Co-expression 
modules were then identified through hierarchical clustering 
and the dynamic tree cut algorithm, with a minimum module 
size set at 100 genes. Module eigengenes were subsequently 
calculated to represent the expression profiles of each module, 
and the eigengene network was visualized to illustrate the 
relationships between modules.

Construction of multiple machine learning prediction models 
Using two distinct ARG clusters, machine learning models 
were constructed with the ‘caret’ R package (version 6.0.91), 
including the random forest (RF), support vector machine 
(SVM), and generalized linear model (GLM). RF leverages 
multiple independent decision trees for classification or 
regression tasks [10], while SVM creates a hyperplane 
with maximum margin to separate positive from negative 
instances in the feature space [11]. The GLM, an extension of 
linear regression, estimates relationships between normally 
distributed correlated features and categorical or continuous 
independent variables [12]. Feature selection was performed 
using recursive feature elimination (RFE) with 10-fold cross-
validation to identify the most informative features, minimizing 
overfitting. Cross-validation was implemented using stratified 
5-fold validation to ensure balanced representation of clusters 
across splits. Model parameter optimization was conducted 
using a grid search approach combined with cross-validation 
to select the best hyperparameters. Model comparison was 
based on performance metrics, including accuracy, precision, 
recall, F1-score, and area under the receiver operating 
characteristic (AUC-ROC) curve, providing a comprehensive 
evaluation.
The 50 NAFLD samples were randomly split into a training 
set (70%, n = 35) and a validation set (30%, n = 15). Model 
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parameters were automatically optimized, and all models were 
evaluated through 5-fold cross-validation. The ‘Dalex’ package 
(version 2.4.0) was employed to interpret the models, providing 
insights into residual distribution and feature importance. The 
area under the receiver operating characteristic (ROC) curve 
was visualized using the ‘proc’ R package(version1.18.0). The 
optimal model was selected based on performance metrics, 
and the top five predictive genes associated with NAFLD were 
identified as key variables.

Analysis of the diagnostic value of biomarkers
The receiver operating characteristic (ROC) curve was 
generated using the ‘pROC’ R package, and the area under 
the ROC curve (AUC) was calculated to assess model 
performance. The discriminatory ability of the key predictor 
genes in distinguishing NAFLD from non-NAFLD was externally 
validated using the GSE126848 dataset.

Construction and validation of nomogram models
Eigengenes were combined to construct nomograms using 
the ‘rms’ R package. The accuracy of the nomogram was 
then evaluated through a calibration curve, comparing 
predicted versus observed outcomes. Additionally, decision 
curve analysis was performed to assess the clinical utility of 
the nomogram, determining its net benefit across different 
threshold probabilities.

Cell culture
AML12 cells were maintained in a 5% CO2 incubator at 37°C, 
supplemented with 10% fetal bovine serum (FBS, Gibco, USA) 
and 1% penicillin-streptomycin (Gibco). To model non-alcoholic 
fatty liver disease (NAFLD) in vitro, hepatocytes were exposed 
to a medium containing 0.25 mM palmitic acid (PA, Sigma-
Aldrich) and 0.5 mM oleic acid (OA, MedChemExpress) for the 
indicated durations. A fatty acid-free bovine serum albumin 
control was used to assess baseline conditions.

Oil red O staining
 Oil Red O staining was performed to evaluate lipid droplet 
formation in AML12 cells, following a previously established 
protocol [13]. In brief, cells were washed twice with PBS, fixed 
in 4% paraformaldehyde for 30 minutes, and then stained with 
a 0.5% Oil Red O solution prepared in 60% isopropanol for 
30 minutes. After staining, cells were rinsed with PBS before 
imaging. Lipid droplets were visualized and images were 
captured using an inverted microscope (ZEISS Corporation) at 
100× magnification.

Statistical analysis
All data are expressed as the mean ± standard deviation (SD). 
Statistical comparisons between groups were conducted 
using an unpaired two-tailed Student's t-test. A p-value of 
less than 0.05 was considered statistically significant. All 
statistical analyses were performed using GraphPad Prism 8 
(GraphPad Software, San Diego, USA) and R software (version 
4.2.2; https://www.r-project.org/).

Results

Identifying AR‑DEGs in Patients with NAFLD
The microarray datasets GSE63067 and GSE89632 were 
obtained from the Gene Expression Omnibus (GEO) database 
to elucidate the biological functions of anoikis regulators in 
the development and progression of non-alcoholic fatty liver 
disease (NAFLD). We assessed the expression profiles of 422 
anoikis-associated genes between NAFLD and non-NAFLD 
controls using a merged dataset that was successfully cleared 
of batch effects(S-Figure1A-D). This dataset included 50 
NAFLD tissues and 31 normal liver tissues. Seven significant 
differential expression genes were identified as key anoikis 
regulators: SIK1, PTGS2, MYC, THBS1, IL6, EPHA2, and 
TNFRSF12A (Figure 1A-B). Notably, these genes exhibited 
elevated expression in NAFLD patients compared to non-
NAFLD controls. Correlation analysis of the differentially 
expressed anoikis genes revealed a strong synergistic 
interaction between THBS1 and TNFRSF12A (Figure 1C-D). 
Further investigation into these correlations highlighted the 
complex interplay among these genes. Immune infiltration 
analysis, util izing the CiberSort algorithm, visualized 
differences in the proportions of 22 infiltrating immune cell 
types between NAFLD and non-NAFLD subjects (Figure 1E). 
The results indicated higher levels of M1 macrophages, 
M2 macrophages, and resting mast cells in NAFLD tissues, 
suggesting that immune system alterations are implicated 
in NAFLD pathogenesis. Additionally, correlation analysis 
revealed associations between anoikis-related genes and 
various immune cell types, including resting dendritic cells, 
activated dendritic cells, resting mast cells, activated mast 
cells, and γ-delta T cells (Figure 1F). These findings underscore 
the significant role of anoikis-related genes in modulating 
immune infiltration and highlight their potential impact on the 
development and progression of NAFLD.

Identification of anoikis clusters in NAFLD
Additionally, 50 NAFLD samples were categorized based 
on the expression profiles of seven differentially expressed 
anoikis-related genes (ARGs) using a consensus clustering 
algorithm. This analysis aimed to identify the expression 
patterns of genes associated with anoikis in NAFLD. The 
optimal number of clusters was determined to be two (k=2), 
where the clustering was most stable (Figure 2A), and the 
cumulative distribution function (CDF) curve displayed minimal 
fluctuation within the consensus index range of 0.3 to 0.4 
(Figure 2B). When k ranged from 2 to 9, the difference between 
the areas under the CDF curves (for k and k-1) indicated 
the optimal clustering at k = 2 (Figure 2C). Furthermore, the 
concordance scores for each subtype were greater than 0.9 
when k=2 (Figure 2D).
Consequently, the 50 NAFLD patients were divided into 
two distinct groups: Group 1 (n = 38) and Group 2 (n = 12). 
Principal Component Analysis (PCA) further corroborated 
the significant differences between the two clusters (Figure 
2E). These findings highlight distinct expression patterns of 
anoikis-related genes in NAFLD, suggesting varied underlying 
mechanisms and potential therapeutic targets within these 
patient subgroups.
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Figure 1. Expression of ARGs in NAFLD. (A) Boxplots illustrating the differential expression of seven ARGs between NAFLD patients and non-
NAFLD controls, with significance levels denoted as p < 0.05, *p < 0.01, **p < 0.001, and ns indicating no significance. (B) Heatmap showing the 
expression patterns of the seven ARGs (C) Correlation analysis of nine differentially expressed CRGs. (D) Gene interaction network of the seven 
differentially expressed ARGs. (E) Comparative analysis of the relative abundance of 22 infiltrating immune cell types between NAFLD and non-
NAFLD controls. (F) Boxplots representing differences in immune cell infiltration between NAFLD and non-NAFLD cohorts, with significance 
levels as p < 0.05, *p < 0.01, **p < 0.001, and ns indicating no significance. (G) Correlation analysis between the expression of seven differentially 
expressed ARGs and infiltrating immune cells.

A
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Figure 2. Identification of anoikis-related molecular patterns in NAFLD. (A) Consensus clustering matrix for k = 2, displaying the sample 
groupings. (B–E) Representative cumulative distribution function (CDF) curves for k values ranging from 2 to 9. (C) Relative changes in CDF 
delta area curves at different k values. (D) Consensus scores for each subtype across the range of k values (k = 2 to 9). (E) Principal component 
analysis (PCA) plot revealing the classification of NAFLD patients into two distinct molecular subtypes.

Differential expression of genes regulated by anoikis 
and immune infiltration signatures of associated anoikis 
clusters	
To further elucidate the molecular characteristics of the 
identified subgroups, we comprehensively assessed the 
expression differences of seven critical anoikis-related genes 
(ARGs) between Cluster 1 and Cluster 2. Notably, Cluster 
2 exhibited significantly higher expression levels of these 
seven CRGs (Figure 3A, B). To provide a detailed immune 
infiltration analysis, we utilized the CIBERSORT algorithm 
with LM22 signatures to quantify 22 immune cell types from 
bulk RNA-seq data. The analysis revealed distinct immune 
microenvironment profiles between the clusters (Figure 3C, D). 
Cluster 1 displayed significantly higher proportions of CD8 T 
cells (p = 0.003), γ-delta T cells (p = 0.002), M1 macrophages 
(p = 0.005), M2 macrophages (p = 0.004), resting dendritic 
cells (p = 0.01), and resting mast cells (p = 0.008). In contrast, 
Cluster 2 was characterized by elevated proportions of 
monocytes (p = 0.002), activated dendritic cells (p = 0.001), 
activated mast cells (p = 0.007), and neutrophils (p = 0.003). 
Furthermore, the immune cell ratio between pro-inflammatory 
(e.g., M1 macrophages) and anti-inflammatory (e.g., M2 
macrophages) populations was higher in Cluster 1, suggesting 
a more inflammatory phenotype. These findings underscore 
the divergent immune landscapes between the anoikis-related 

clusters. Differential immune cell infiltration, particularly the 
balance between pro- and anti-inflammatory populations, may 
play a pivotal role in the pathogenesis and progression of 
NAFLD across these subgroups.

Construction of gene weighted co-expression module and 
gene screening
The Weighted Gene Co-Expression Network Analysis (WGCNA) 
algorithm was employed to construct co-expression networks 
and modules in normal controls and individuals with NAFLD, 
aiming to identify key gene modules associated with NAFLD. 
Co-expressed gene modules were identified with the soft 
power value set to 9 and the scale-free R2 set to 0.9 (Figure 
4A). The dynamic tree cut algorithm yielded four distinct 
co-expressed gene modules, each represented by different 
colors, and a topological overlap matrix (TOM) heat map 
was generated (Figure 4B–E). Subsequent analysis of the 
module-clinical signature co-expression, correlating control 
and NAFLD groups, revealed that the blue module was most 
closely associated with NAFLD, comprising 566 genes (Figure 
4F). This module demonstrated a strong positive correlation 
with module-associated genes. Further, the WGCNA algorithm 
was used to analyze key gene modules closely related to 
anoikis genes. Soft threshold parameters β = 9 and R2 = 0.9 
were selected as the most suitable for constructing scale-

A
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Figure 3. Differential analysis of feature gene expression and immune characteristics between anoikis clusters. (A) Boxplots displaying 
the expression levels of nine feature genes across the two anoikis subtypes, with significance levels indicated (p < 0.05, **p < 0.001, ns, 
not significant). (B) Heatmap illustrating the differential expression of these nine feature genes between the anoikis subtypes. (C) Relative 
abundances of 22 infiltrating immune cell types across the two anoikis clusters. (D) Boxplots showing the differences in immune cell infiltration 
between the anoikis subtypes (p < 0.05, ns, not significant).

free networks (S-Figure 3A). Six significant modules were 
identified, and heatmaps depicting the TOMs of all module-
associated genes were generated (S-Figure 3B–E). Analysis 
of the module-clinical feature relationships between Cluster 
1 and Cluster 2 revealed a high correlation between the 
yellow module (221 genes) and NAFLD clusters (S-Figure 3F). 
Additionally, correlation analysis indicated that the brown 
module genes were significantly associated with selected 
modules 
These findings highlight the importance of the blue and yellow 
modules in NAFLD and their potential involvement in the 
disease's molecular mechanisms, providing valuable insights 
for future research into NAFLD pathogenesis and therapeutic 
targets.

Identification of cluster-specific DEGs and functional 
annotation
A total of 161 cluster-specific differentially expressed genes 
(DEGs) were identified by intersecting module-associated 
genes of anoikis with those from NAFLD and non-NAFLD 
individuals (S-Figure 4A). To elucidate the functional 
differences between the clusters, Gene Set Variation Analysis 
(GSVA) was performed on these cluster-specific DEGs. GSVA 

scores were calculated using a Kolmogorov-Smirnov-like 
rank-based method to determine pathway enrichment levels 
across clusters. The analysis revealed that Cluster 2 exhibited 
upregulation in pathways related to sulfur metabolism, steroid 
hormone biosynthesis, and bile acid biosynthesis, while 
Cluster 1 showed increased expression in glycosaminoglycan 
biosynthesis, chondroitin sulfate metabolism, ECM-receptor 
interactions, and the ERBB signaling pathway (S-Figure 4C). 
Furthermore, Biological Process analysis was performed using 
the over-representation analysis (ORA) method, applying a 
hypergeometric test with a significance threshold of adjusted 
p-value < 0.05 (S-Figure 4B). These findings underscore 
distinct functional pathways associated with each cluster, 
providing insights into the molecular mechanisms underlying 
NAFLD and its potential therapeutic targets.

Machine learning model construction and evaluation
A total of 161 module-related genes, intersected from 
individuals with and without NAFLD based on anoikis-
associated gene subsets, were analyzed to identify cluster-
specific genes with high diagnostic potential.  Three 
established machine learning models—Random Forest (RF), 
Support Vector Machine (SVM), and Generalized Linear Model 
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(GLM)—were developed to evaluate these genes. Model 
performance was interpreted using the R package ‘Dalex,’ 
and residual distributions for each model in the test set were 
plotted. The GLM and RF models exhibited relatively low 
residuals (Figure 5A-B). The top 10 significant feature variables 
for each model were ranked based on root mean square error 
(RMSE) (Figure 5D).
The discriminative performance of the models was assessed 
through receiver operating characteristic (ROC) curve analysis 
with fivefold cross-validation. The SVM model demonstrated 
the highest area under the ROC curve (AUC=0.97, Figure 5C), 
indicating superior performance in distinguishing between 
clusters. Consequently, the four most significant variables 
(TMEM169, THBS1, ASIP, BRCA1) from the SVM model were 
selected for further analysis.
Validation in dataset GSE126848, which includes 31 NAFLD 
patients and 26 normal controls, confirmed the expression 
differences of these signature genes. Specifically, THBS1 and 
ASIP were downregulated in NAFLD, while TMEM169 and 
BRCA1 were upregulated (S-Figure 5A, B). ROC analysis in this 
validation set demonstrated effective diagnostic performance 
for NAFLD (AUC = 0.778, S-Figure 5C). A nomogram was 
constructed to predict NAFLD progression, incorporating 

Figure 4. Co-expression network of differentially expressed genes in NAFLD. (A) Determination of the optimal soft-thresholding power for network 
construction. (B) Dendrogram of clustered genes, with distinct co-expression modules represented by different colors. (C) Clustering of module 
eigengenes. (D) Heatmap showing the correlations among the five identified modules. (E) Correlation analysis between module eigengenes and 
clinical status, with rows indicating modules and columns representing clinical traits. (F) Scatter plot depicting the relationship between module 
membership in the blue module and gene significance for NAFLD.

point values for each characteristic variable. The nomogram’s 
standard curve validated its capacity to accurately assess 
NAFLD progression (S-Figure 2A, B). Decision curve analysis 
further indicated that the nomogram offers clinical benefit 
for NAFLD patients. Collectively, these findings suggest 
that this subset of anoikis-associated genes can effectively 
differentiate NAFLD from non-NAFLD cases.

In vitro experiments further verified the results
In vitro studies were conducted using AML12 cells. AML12 
cells were treated with oleate (OA) and palmitate (PA) to 
induce fat accumulation, mimicking hepatic steatosis. 
Following free fatty acid (FFA) induction, cells exhibited 
increased fat accumulation (Figure 6A–B). Expression of 
TMEM169 and BRCA1 was elevated, while ASIP and THBS1 
expression decreased (Figure 6C).

Discussion

NAFLD is the most prevalent chronic liver disease, with its 
incidence steadily increasing over the past two decades due to 
lifestyle and dietary changes. While apoptosis and pyroptosis 

A
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Figure 5. Construction and evaluation of RF, SVM, and GLM machine learning models. (A) Boxplots displaying the residuals for each machine 
learning model, with the red dot indicating the root mean square error (RMSE). (B) Cumulative residual distribution across the models. (C) ROC 
analysis of the three machine learning models, assessed via 5-fold cross-validation in the testing cohort. (D) Key features identified in the RF, 
SVM, and GLM models.

Figure 6. Verification of model gene mRNA 
expression levels in AML12 cells. β-Actin served 
as the control. (A-B) Oil Red O staining of the 
cells, with magnification at ×100. (C) Relative 
mRNA levels of TMEM169, THBS1, ASIP, and 
BRCA1, normalized to β-Actin. Data are presented 
as mean ± s.d. p < 0.05; *p < 0.01; **p < 0.001.

A
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have been studied extensively, the role of anoikis in NAFLD 
remains unclear. Our findings highlight seven anoikis-related 
genes (SIK1, MYC, IL6, TNFRSF12A, PTGS2, THBS1, EPHA2) 
as critical regulators of NAFLD pathogenesis. These genes 
were significantly upregulated in NAFLD patients compared 
to healthy controls, with THBS1 and TNFRSF12A showing a 
strong synergistic correlation. This aligns with prior research 
emphasizing the pivotal roles of macrophages in NAFLD 
progression [15,16]. The polarization of macrophages into pro-
inflammatory (M1) and anti-inflammatory (M2) phenotypes 
plays a dual role in promoting inflammation and facilitating 
tissue repair, respectively. Additionally, our study demonstrated 
that Cluster 2, characterized by high expression of ARGs, 
exhibited enhanced immune activation, as evidenced by 
elevated monocyte and neutrophil levels. Pathway enrichment 
revealed that Cluster 2 was predominantly associated with 
sulfur metabolism, steroid hormone biosynthesis, and bile acid 
biosynthesis, consistent with previous studies linking these 
pathways to immune activation and inflammation in NAFLD 
[19,20]. By integrating immune infiltration data with ARG 
expression, we provide a comprehensive understanding of 
how anoikis impacts NAFLD progression.
The machine learning-based SVM model achieved the highest 
predictive accuracy (AUC = 0.970), identifying TMEM169, 
THBS1, ASIP, and BRCA1 as key diagnostic markers. This 
model was validated using external datasets, ensuring its 
generalizability. THBS1, a critical mediator of hepatocyte 
homeostasis ,  and BRCA1,  associated with mult ip le 
cancer types including hepatocellular carcinoma, were 
notably overexpressed in HCC, corroborating our findings. 
However, the practical implementation of this model poses 
challenges, including the need for large-scale validation in 
diverse populations and integration with clinical workflows. 
Additionally, population heterogeneity, such as ethnic and 
regional differences in NAFLD prevalence, may influence the 
generalizability of our findings. The inclusion of a nomogram 
further enhances clinical applicability, offering a user-friendly 
tool for NAFLD risk assessment. Despite these advancements, 
limitations such as a relatively small sample size and the 
lack of longitudinal clinical data warrant further investigation. 
Future studies should explore the dynamic interplay between 
ARGs and the immune microenvironment in larger cohorts.

Conclusion

This study establishes the critical role of anoikis in the 
progression and immune cell infiltration of non-alcoholic 
fatty liver disease (NAFLD). By identifying and validating two 
distinct anoikis-related molecular clusters and four key genes 
(TMEM169, THBS1, ASIP, and BRCA1), the research supports a 
predictive model with high accuracy. 

Acknowledgements

Not applicable.

Author Contributions

Jinzhen Cai, Yuming Wang contributed to the research 
design. Jinzhen Cai, Yuming Wang, Xinqiang Li, Jijun Shan 
and Ruidong Ding contributed to the data management and 
statistical analyses. Jinzhen Cai, Yuming Wang wrote the 
manuscript. All authors reviewed the manuscript.

Funding Information

This work was supported by the National Natural Science 
Foundation of China (No. 82370666) and the Science 
Foundation of Shandong Province (No. ZR2022MH292).

Conflict of Interest

The authors declare no conflict of interest.

Data Availability

All data needed to evaluate the conclusions in the paper 
are present in the paper or the Supplementary Materials. 
Additional data related to this paper may be requested from 
the authors.

AReference:

[1]	 Guo X, Yin X, Liu Z, & Wang J. (2022). Non-Alcoholic Fatty 
Liver Disease (NAFLD) Pathogenesis and Natural Products 
for Prevention and Treatment. Int J Mol Sci, 23(24). 
https://doi.org/10.3390/ijms232415489 

[2]	 Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, 
Eslam M, et al. (2018). Global burden of NAFLD and 
NASH: trends, predictions, risk factors and prevention. 
Nat Rev Gastroenterol Hepatol, 15(1), 11-20. https://doi.
org/10.1038/nrgastro.2017.109 

[3]	 Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, & 
Wymer M. (2016). Global epidemiology of nonalcoholic 
fatty  l iver  disease-Meta-analyt ic  assessment of 
prevalence, incidence, and outcomes. Hepatology, 64(1), 
73-84. https://doi.org/10.1002/hep.28431 

[4]	 Byrne CD, & Targher G. (2015). NAFLD: a multisystem 
disease. J Hepatol, 62(1 Suppl), S47-64. https://doi.
org/10.1016/j.jhep.2014.12.012 

[5]	 Li Y, Pan Q, Cheng M, & Wu Z. (2023). Identification 
and validation of anoikis-associated gene SNCG as a 
prognostic biomarker in gastric cancer. Aging (Albany NY), 
15(7), 2541-2553. https://doi.org/10.18632/aging.204626 

[6]	 Ni K, & Meng L. (2024). Mechanism of PANoptosis in 
metabolic dysfunction-associated steatotic liver disease. 
Clin Res Hepatol Gastroenterol, 48(7), 102381. https://doi.
org/10.1016/j.clinre.2024.102381 

[7]	 Sun HJ, Jiao B, Wang Y, Zhang YH, Chen G, Wang ZX, et 
al. (2024). Necroptosis contributes to non-alcoholic fatty 
liver disease pathoetiology with promising diagnostic 

https://doi.org/10.3390/ijms232415489
https://doi.org/10.3390/ijms232415489
https://doi.org/10.3390/ijms232415489
https://doi.org/10.3390/ijms232415489
https://doi.org/10.1038/nrgastro.2017.109
https://doi.org/10.1038/nrgastro.2017.109
https://doi.org/10.1038/nrgastro.2017.109
https://doi.org/10.1038/nrgastro.2017.109
https://doi.org/10.1038/nrgastro.2017.109
https://doi.org/10.3390/ijms232415489
https://doi.org/10.3390/ijms232415489
https://doi.org/10.3390/ijms232415489
https://doi.org/10.3390/ijms232415489
https://doi.org/10.3390/ijms232415489
https://doi.org/10.1016/j.jhep.2014.12.012
https://doi.org/10.1016/j.jhep.2014.12.012
https://doi.org/10.1016/j.jhep.2014.12.012
https://doi.org/10.18632/aging.204626
https://doi.org/10.18632/aging.204626
https://doi.org/10.18632/aging.204626
https://doi.org/10.18632/aging.204626
https://doi.org/10.1016/j.clinre.2024.102381
https://doi.org/10.1016/j.clinre.2024.102381
https://doi.org/10.1016/j.clinre.2024.102381
https://doi.org/10.1016/j.clinre.2024.102381
https://doi.org/10.3748/wjg.v30.i14.1968
https://doi.org/10.3748/wjg.v30.i14.1968
https://doi.org/10.3748/wjg.v30.i14.1968


91

https://doi.org/10.71321/p63ws623

and therapeutic functions. World J Gastroenterol, 30(14), 
1968-1981. https://doi.org/10.3748/wjg.v30.i14.1968 

[8]	 Li R, Xue W, Wei H, Fan Q, Li X, Qiu Y, et al. (2023). 
Research Progress of Pyroptosis in Fatty Liver Disease. Int 
J Mol Sci, 24(17). https://doi.org/10.3390/ijms241713065 

[9]	 Langfelder P,  & Horvath S. (2008). WGCNA: an R 
package for weighted correlation network analysis. BMC 
Bioinformatics, 9, 559. https://doi.org/10.1186/1471-
2105-9-559 

[10]	Rigatti SJ. (2017). Random Forest. J Insur Med, 47(1), 31-
39. https://doi.org/10.17849/insm-47-01-31-39.1 

[11]	Tan M, Pu J, & Zheng B. (2014). Optimization of breast 
mass classification using sequential forward floating 
selection (SFFS) and a support vector machine (SVM) 
model. Int J Comput Assist Radiol Surg, 9(6), 1005-1020. 
https://doi.org/10.1007/s11548-014-0992-1 

[12]	Weng G, Clark K, Akbarian A, Noudoost B, & Nategh 
N. (2024). Time-varying generalized linear models: 
characterizing and decoding neuronal dynamics in higher 
visual areas. Front Comput Neurosci, 18, 1273053. https://
doi.org/10.3389/fncom.2024.1273053 

[13]	Chu MJ, Hickey AJ, Tagaloa S, Zhang L, Dare AJ, 
MacDonald JR, et al. (2014). Ob/ob mouse livers show 
decreased oxidative phosphorylation efficiencies and 
anaerobic capacities after cold ischemia. PLoS One, 9(6), 
e100609. https://doi.org/10.1371/journal.pone.0100609 

[14]	Roychowdhury S, McCullough RL, Sanz-Garcia C, Saikia P, 
Alkhouri N, Matloob A, et al. (2016). Receptor interacting 
protein 3 protects mice from high-fat diet-induced 
liver injury. Hepatology, 64(5), 1518-1533. https://doi.
org/10.1002/hep.28676 

[15]	Kazankov K, Jørgensen SMD, Thomsen KL, Møller 
HJ, Vilstrup H, George J, et al. (2019). The role of 
macrophages in nonalcoholic fatty liver disease and 
nonalcoholic steatohepatitis. Nat Rev Gastroenterol 
Hepatol, 16(3), 145-159. https://doi.org/10.1038/s41575-
018-0082-x 

[16]	Wang Y, Smith W, Hao D, He B, & Kong L. (2019). M1 and 
M2 macrophage polarization and potentially therapeutic 
naturally occurring compounds. Int Immunopharmacol, 70, 
459-466. https://doi.org/10.1016/j.intimp.2019.02.050 

[17]	Gong H, He Q, Zhu L, Feng Z, Sun M, Jiang J, et al. (2024). 
Associations between systemic inflammation indicators 
and nonalcoholic fatty liver disease: evidence from a 
prospective study. Front Immunol, 15, 1389967. https://
doi.org/10.3389/fimmu.2024.1389967 

[18]	Wang YF, Zhang WL, Li ZX, Liu Y, Tan J, Yin HZ, et al. (2024). 
METTL14 downregulation drives S100A4(+) monocyte-
derived macrophages via MyD88/NF-κB pathway to 
promote MAFLD progression. Signal Transduct Target 
Ther, 9(1), 91. https://doi.org/10.1038/s41392-024-01797-
1 

[19]	Liu Z, Huang H, Ruan J, Wang Z, & Xu C. (2024). The sulfur 
microbial diet and risk of nonalcoholic fatty liver disease: 
a prospective gene-diet study from the UK Biobank. Am 
J Clin Nutr, 119(2), 417-424. https://doi.org/10.1016/
j.ajcnut.2023.11.012 

[20]	Bin DH, Liu F, Peng KP, Zhan M, Tan Y, Liu Q, et al. (2024). 
The relationship between follicle-stimulating hormone 
and metabolic dysfunction-associated fatty liver disease 
in men. Nutr Diabetes, 14(1), 52. https://doi.org/10.1038/

s41387-024-00314-1 
[21]	Deo RC.  (2015).  Machine Learning in  Medicine. 

Circulation, 132(20), 1920-1930. https://doi.org/10.1161/
circulationaha.115.001593 

[22]	Bai J, Xia M, Xue Y, Ma F, Cui A, Sun Y, et al. (2020). 
Thrombospondin 1 improves hepatic steatosis in diet-
induced insulin-resistant mice and is associated with 
hepatic fat content in humans. EBioMedicine, 57, 102849. 
https://doi.org/10.1016/j.ebiom.2020.102849 

[23]	Mei J, Wang R, Xia D, Yang X, Zhou W, Wang H, et al. (2020). 
BRCA1 Is a Novel Prognostic Indicator and Associates 
with Immune Cell Infiltration in Hepatocellular Carcinoma. 
DNA Cell Biol, 39(10), 1838-1849. https://doi.org/10.1089/
dna.2020.5644 

https://doi.org/10.3748/wjg.v30.i14.1968
https://doi.org/10.3748/wjg.v30.i14.1968
https://doi.org/10.3390/ijms241713065
https://doi.org/10.3390/ijms241713065
https://doi.org/10.3390/ijms241713065
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.17849/insm-47-01-31-39.1
https://doi.org/10.17849/insm-47-01-31-39.1
https://doi.org/10.1007/s11548-014-0992-1
https://doi.org/10.1007/s11548-014-0992-1
https://doi.org/10.1007/s11548-014-0992-1
https://doi.org/10.1007/s11548-014-0992-1
https://doi.org/10.1007/s11548-014-0992-1
https://doi.org/10.3389/fncom.2024.1273053
https://doi.org/10.3389/fncom.2024.1273053
https://doi.org/10.3389/fncom.2024.1273053
https://doi.org/10.3389/fncom.2024.1273053
https://doi.org/10.3389/fncom.2024.1273053
https://doi.org/10.1371/journal.pone.0100609
https://doi.org/10.1371/journal.pone.0100609
https://doi.org/10.1371/journal.pone.0100609
https://doi.org/10.1371/journal.pone.0100609
https://doi.org/10.1371/journal.pone.0100609
https://doi.org/10.1002/hep.28676
https://doi.org/10.1002/hep.28676
https://doi.org/10.1002/hep.28676
https://doi.org/10.1002/hep.28676
https://doi.org/10.1002/hep.28676
https://doi.org/10.1038/s41575-018-0082-x
https://doi.org/10.1038/s41575-018-0082-x
https://doi.org/10.1038/s41575-018-0082-x
https://doi.org/10.1038/s41575-018-0082-x
https://doi.org/10.1038/s41575-018-0082-x
https://doi.org/10.1038/s41575-018-0082-x
https://doi.org/10.1016/j.intimp.2019.02.050
https://doi.org/10.1016/j.intimp.2019.02.050
https://doi.org/10.1016/j.intimp.2019.02.050
https://doi.org/10.1016/j.intimp.2019.02.050
https://doi.org/10.3389/fimmu.2024.1389967
https://doi.org/10.3389/fimmu.2024.1389967
https://doi.org/10.3389/fimmu.2024.1389967
https://doi.org/10.3389/fimmu.2024.1389967
https://doi.org/10.3389/fimmu.2024.1389967
https://doi.org/10.1038/s41392-024-01797-1
https://doi.org/10.1038/s41392-024-01797-1
https://doi.org/10.1038/s41392-024-01797-1
https://doi.org/10.1038/s41392-024-01797-1
https://doi.org/10.1038/s41392-024-01797-1
https://doi.org/10.1038/s41392-024-01797-1
https://doi.org/10.1016/j.ajcnut.2023.11.012
https://doi.org/10.1016/j.ajcnut.2023.11.012
https://doi.org/10.1016/j.ajcnut.2023.11.012
https://doi.org/10.1016/j.ajcnut.2023.11.012
https://doi.org/10.1016/j.ajcnut.2023.11.012
https://doi.org/10.1038/s41387-024-00314-1
https://doi.org/10.1038/s41387-024-00314-1
https://doi.org/10.1038/s41387-024-00314-1
https://doi.org/10.1038/s41387-024-00314-1
https://doi.org/10.1038/s41387-024-00314-1
https://doi.org/10.1161/circulationaha.115.001593
https://doi.org/10.1161/circulationaha.115.001593
https://doi.org/10.1161/circulationaha.115.001593
https://doi.org/10.1016/j.ebiom.2020.102849
https://doi.org/10.1016/j.ebiom.2020.102849
https://doi.org/10.1016/j.ebiom.2020.102849
https://doi.org/10.1016/j.ebiom.2020.102849
https://doi.org/10.1016/j.ebiom.2020.102849
https://doi.org/10.1089/dna.2020.5644
https://doi.org/10.1089/dna.2020.5644
https://doi.org/10.1089/dna.2020.5644
https://doi.org/10.1089/dna.2020.5644
https://doi.org/10.1089/dna.2020.5644

