Linking Environmental Exposures to Depression: Insights from Epidemiology, Biology, and Methodology
DOI:
https://doi.org/10.71321/ymyc0370Keywords:
Depression, Environmental risk factors, Epidemiology, Biological pathways, Public health strategiesAbstract
Depression is a leading cause of disability worldwide, with significant personal and societal consequences. Emerging research highlights the critical role of environmental exposures as modifiable risk factors influencing depression risk and progression. Over the past decade, a substantial body of epidemiological evidence has linked diverse environmental factors—including air pollution, limited green space access, chronic noise exposure, adverse features of urbanization, unhealthy lifestyle behaviors, early life adversity, and internal toxicant burdens—to elevated risks of depressive symptoms and clinical depression. These exposures exert their effects through interconnected biological pathways, including chronic systemic inflammation, oxidative stress, hypothalamic-pituitary-adrenal axis dysregulation, blood-brain barrier disruption, and gut microbiota alterations. Recent methodological advances, such as high-resolution environmental exposure assessment, multi-exposure model approaches, longitudinal cohort designs, and enhanced causal inference techniques, have strengthened the evidence base. Nevertheless, challenges remain in accurately characterizing multifactorial exposures and establishing causal relationships across diverse populations. Incorporating a life course perspective and adopting comprehensive exposome frameworks will be essential for future research. Understanding environmental determinants of depression not only advances etiological knowledge but also highlights critical opportunities for prevention. Public health interventions aimed at reducing harmful environmental exposures, enhancing urban green infrastructure, promoting healthy lifestyle behaviors, and mitigating psychosocial stressors offer promising strategies for reducing the burden of depression. Ultimately, integrating environmental health perspectives into mental health research and policy may provide transformative approaches to preventing and alleviating depression at the population level.
References
[1] Cui L, Li S, Wang S, Wu X, Liu Y, Yu W, et al. (2024). Major depressive disorder: hypothesis, mechanism, prevention and treatment. Signal Transduct Target Ther, 9(1), 30. https://doi.org/10.1038/s41392-024-01738-y
[2] Consortium MDDWGotPG. (2025). Trans-ancestry genome-wide study of depression identifies 697 associations implicating cell types and pharmacotherapies. Cell, 188(3), 640-652.e649. https://doi.org/10.1016/j.cell.2024.12.002
[3] Lynch CJ, Elbau IG, Ng T, Ayaz A, Zhu S, Wolk D, et al. (2024). Frontostriatal salience network expansion in individuals in depression. Nature, 633(8030), 624-633. https://doi.org/10.1038/s41586-024-07805-2
[4] Gotlib IH, & Joormann J. (2010). Cognition and depression: current status and future directions. Annu Rev Clin Psychol, 6, 285-312. https://doi.org/10.1146/annurev.clinpsy.121208.131305
[5] Nestler EJ. (2014). Epigenetic mechanisms of depression. JAMA Psychiatry, 71(4), 454-456. https://doi.org/10.1001/jamapsychiatry.2013.4291
[6] van den Bosch M, & Meyer-Lindenberg A. (2019). Environmental Exposures and Depression: Biological Mechanisms and Epidemiological Evidence. Annu Rev Public Health, 40, 239-259. https://doi.org/10.1146/annurev-publhealth-040218-044106
[7] Liu F, Xu J, Guo L, Qin W, Liang M, Schumann G, et al. (2023). Environmental neuroscience linking exposome to brain structure and function underlying cognition and behavior. Mol Psychiatry, 28(1), 17-27. https://doi.org/10.1038/s41380-022-01669-6
[8] Wild CP. (2005). Complementing the genome with an "exposome": the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol Biomarkers Prev, 14(8), 1847-1850. https://doi.org/10.1158/1055-9965.Epi-05-0456
[9] Wild CP. (2012). The exposome: from concept to utility. Int J Epidemiol, 41(1), 24-32. https://doi.org/10.1093/ije/dyr236
[10] Choi KW, Stein MB, Nishimi KM, Ge T, Coleman JRI, Chen CY, et al. (2020). An Exposure-Wide and Mendelian Randomization Approach to Identifying Modifiable Factors for the Prevention of Depression. Am J Psychiatry, 177(10), 944-954. https://doi.org/10.1176/appi.ajp.2020.19111158
[11] Wang Z, Zellers S, Whipp AM, Heinonen-Guzejev M, Foraster M, Júlvez J, et al. (2023). The effect of environment on depressive symptoms in late adolescence and early adulthood: an exposome-wide association study and twin modeling. Nat Ment Health, 1(10), 751-760. https://doi.org/10.1038/s44220-023-00124-x
[12] Fan SJ, Heinrich J, Bloom MS, Zhao TY, Shi TX, Feng WR, et al. (2020). Ambient air pollution and depression: A systematic review with meta-analysis up to 2019. Sci Total Environ, 701, 134721. https://doi.org/10.1016/j.scitotenv.2019.134721
[13] Wang J, Ma Y, Tang L, Li D, Xie J, Hu Y, et al. (2024). Long-term exposure to residential greenness and decreased risk of depression and anxiety. Nat Ment Health, 2(5), 525-534. https://doi.org/10.1038/s44220-024-00227-z
[14] Jigeer G, Tao W, Zhu Q, Xu X, Zhao Y, Kan H, et al. (2022). Association of residential noise exposure with maternal anxiety and depression in late pregnancy. Environ Int, 168, 107473. https://doi.org/10.1016/j.envint.2022.107473
[15] Chen TK, Horsdal HT, Samuelsson K, Closter AM, Davies M, Barthel S, et al. (2023). Higher depression risks in medium- than in high-density urban form across Denmark. Sci Adv, 9(21), eadf3760. https://doi.org/10.1126/sciadv.adf3760
[16] Molendijk M, Molero P, Ortuño Sánchez-Pedreño F, Van der Does W, & Angel Martínez-González M. (2018). Diet quality and depression risk: A systematic review and dose-response meta-analysis of prospective studies. J Affect Disord, 226, 346-354. https://doi.org/10.1016/j.jad.2017.09.022
[17] Pearce M, Garcia L, Abbas A, Strain T, Schuch FB, Golubic R, et al. (2022). Association Between Physical Activity and Risk of Depression: A Systematic Review and Meta-analysis. JAMA Psychiatry, 79(6), 550-559. https://doi.org/10.1001/jamapsychiatry.2022.0609
[18] Zhang L, Wang Z, Liu K, Li J, & Li Y. (2024). Investigation of the relationship between heavy metals in the blood and depression in people with different body mass indices using the NHANES database: A cross-sectional study. J Affect Disord, 344, 311-318. https://doi.org/10.1016/j.jad.2023.10.023
[19] Stuart SA, Hinchcliffe JK, & Robinson ESJ. (2019). Evidence that neuropsychological deficits following early life adversity may underlie vulnerability to depression. Neuropsychopharmacology, 44(9), 1623-1630. https://doi.org/10.1038/s41386-019-0388-6
[20] Leonard BE. (2018). Inflammation and depression: a causal or coincidental link to the pathophysiology? Acta Neuropsychiatr, 30(1), 1-16. https://doi.org/10.1017/neu.2016.69
[21] Bhatt S, Nagappa AN, & Patil CR. (2020). Role of oxidative stress in depression. Drug Discov Today, 25(7), 1270-1276. https://doi.org/10.1016/j.drudis.2020.05.001
[22] Kim YK, Na KS, Myint AM, & Leonard BE. (2016). The role of pro-inflammatory cytokines in neuroinflammation, neurogenesis and the neuroendocrine system in major depression. Prog Neuropsychopharmacol Biol Psychiatry, 64, 277-284. https://doi.org/10.1016/j.pnpbp.2015.06.008
[23] Matsuno H, Tsuchimine S, O'Hashi K, Sakai K, Hattori K, Hidese S, et al. (2022). Association between vascular endothelial growth factor-mediated blood-brain barrier dysfunction and stress-induced depression. Mol Psychiatry, 27(9), 3822-3832. https://doi.org/10.1038/s41380-022-01618-3
[24] Schachter J, Martel J, Lin CS, Chang CJ, Wu TR, Lu CC, et al. (2018). Effects of obesity on depression: A role for inflammation and the gut microbiota. Brain Behav Immun, 69, 1-8. https://doi.org/10.1016/j.bbi.2017.08.026
[25] Bhui K, Newbury JB, Latham RM, Ucci M, Nasir ZA, Turner B, et al. (2023). Air quality and mental health: evidence, challenges and future directions. BJPsych Open, 9(4), e120. https://doi.org/10.1192/bjo.2023.507
[26] Ju K, Lu L, Chen T, Duan Z, Chen D, Liao W, et al. (2022). Does long-term exposure to air pollution impair physical and mental health in the middle-aged and older adults? - A causal empirical analysis based on a longitudinal nationwide cohort in China. Sci Total Environ, 827, 154312. https://doi.org/10.1016/j.scitotenv.2022.154312
[27] Xu J, Liu N, Polemiti E, Garcia-Mondragon L, Tang J, Liu X, et al. (2023). Effects of urban living environments on mental health in adults. Nat Med, 29(6), 1456-1467. https://doi.org/10.1038/s41591-023-02365-w
[28] Moll RJ, Cepek JD, Lorch PD, Dennis PM, Tans E, Robison T, et al. (2019). What does urbanization actually mean? A framework for urban metrics in wildlife research. J Appl Ecol, 56(5), 1289-1300. https://doi.org/10.1111/1365-2664.13358
[29] Sampson L, Ettman CK, & Galea S. (2020). Urbanization, urbanicity, and depression: a review of the recent global literature. Curr Opin Psychiatry, 33(3), 233-244. https://doi.org/10.1097/yco.0000000000000588
[30] Galea S, Ahern J, Rudenstine S, Wallace Z, & Vlahov D. (2005). Urban built environment and depression: a multilevel analysis. J Epidemiol Community Health, 59(10), 822-827. https://doi.org/10.1136/jech.2005.033084
[31] Ventriglio A, Torales J, Castaldelli-Maia JM, De Berardis D, & Bhugra D. (2021). Urbanization and emerging mental health issues. CNS Spectr, 26(1), 43-50. https://doi.org/10.1017/s1092852920001236
[32] Hou B, Nazroo J, Banks J, & Marshall A. (2019). Are cities good for health? A study of the impacts of planned urbanization in China. Int J Epidemiol, 48(4), 1083-1090. https://doi.org/10.1093/ije/dyz031
[33] Chen NT, Lin PH, & Guo YL. (2019). Long-term exposure to high temperature associated with the incidence of major depressive disorder. Sci Total Environ, 659, 1016-1020. https://doi.org/10.1016/j.scitotenv.2018.12.434
[34] Jin J, Xu Z, Cao R, Wang Y, Zeng Q, Pan X, et al. (2023). Long-Term Apparent Temperature, Extreme Temperature Exposure, and Depressive Symptoms: A Longitudinal Study in China. Int J Environ Res Public Health, 20(4). https://doi.org/10.3390/ijerph20043229
[35] Tang B, Liu X, Liu Y, Xue C, & Zhang L. (2014). A meta-analysis of risk factors for depression in adults and children after natural disasters. BMC Public Health, 14, 623. https://doi.org/10.1186/1471-2458-14-623
[36] Hautekiet P, Saenen ND, Martens DS, Debay M, Van der Heyden J, Nawrot TS, et al. (2022). A healthy lifestyle is positively associated with mental health and well-being and core markers in ageing. BMC Med, 20(1), 328. https://doi.org/10.1186/s12916-022-02524-9
[37] Yin W, Löf M, Chen R, Hultman CM, Fang F, & Sandin S. (2021). Mediterranean diet and depression: a population-based cohort study. Int J Behav Nutr Phys Act, 18(1), 153. https://doi.org/10.1186/s12966-021-01227-3
[38] Kandola A, Ashdown-Franks G, Hendrikse J, Sabiston CM, & Stubbs B. (2019). Physical activity and depression: Towards understanding the antidepressant mechanisms of physical activity. Neurosci Biobehav Rev, 107, 525-539. https://doi.org/10.1016/j.neubiorev.2019.09.040
[39] Fluharty M, Taylor AE, Grabski M, & Munafò MR. (2017). The Association of Cigarette Smoking With Depression and Anxiety: A Systematic Review. Nicotine Tob Res, 19(1), 3-13. https://doi.org/10.1093/ntr/ntw140
[40] Li J, Wang H, Li M, Shen Q, Li X, Zhang Y, et al. (2020). Effect of alcohol use disorders and alcohol intake on the risk of subsequent depressive symptoms: a systematic review and meta-analysis of cohort studies. Addiction, 115(7), 1224-1243. https://doi.org/10.1111/add.14935
[41] Zhai L, Zhang Y, & Zhang D. (2015). Sedentary behaviour and the risk of depression: a meta-analysis. Br J Sports Med, 49(11), 705-709. https://doi.org/10.1136/bjsports-2014-093613
[42] Magnavita N, & Fileni A. (2014). Association of work-related stress with depression and anxiety in radiologists. Radiol Med, 119(5), 359-366. https://doi.org/10.1007/s11547-013-0355-y
[43] Hammen C. (2018). Risk Factors for Depression: An Autobiographical Review. Annu Rev Clin Psychol, 14, 1-28. https://doi.org/10.1146/annurev-clinpsy-050817-084811
[44] Frankham C, Richardson T, & Maguire N. (2020). Psychological factors associated with financial hardship and mental health: A systematic review. Clin Psychol Rev, 77, 101832. https://doi.org/10.1016/j.cpr.2020.101832
[45] Qi X, Cheng S, Yang J, Liu L, Hao J, Wei W, et al. (2025). The risk of social isolation and loneliness on progression from incident cardiovascular disease to subsequent depression. Nat Ment Health, 10.1038/s44220-025-00418-2, 1-9. https://doi.org/10.1038/s44220-025-00418-2
[46] Stein C, Flor LS, Gil GF, Khalil M, Herbert M, Aravkin AY, et al. (2025). The health effects associated with physical, sexual and psychological gender-based violence against men and women: a Burden of Proof study. Nat Hum Behav, 10.1038/s41562-025-02144-2. https://doi.org/10.1038/s41562-025-02144-2
[47] Mikkelsen S, Coggon D, Andersen JH, Casey P, Flachs EM, Kolstad HA, et al. (2021). Are depressive disorders caused by psychosocial stressors at work? A systematic review with metaanalysis. Eur J Epidemiol, 36(5), 479-496. https://doi.org/10.1007/s10654-021-00725-9
[48] Rao U, Chen LA, Bidesi AS, Shad MU, Thomas MA, & Hammen CL. (2010). Hippocampal changes associated with early-life adversity and vulnerability to depression. Biol Psychiatry, 67(4), 357-364. https://doi.org/10.1016/j.biopsych.2009.10.017
[49] Appleton AA, Jackson BP, Karagas M, & Marsit CJ. (2017). Prenatal exposure to neurotoxic metals is associated with increased placental glucocorticoid receptor DNA methylation. Epigenetics, 12(8), 607-615. https://doi.org/10.1080/15592294.2017.1320637
[50] Kahn LG, Philippat C, Nakayama SF, Slama R, & Trasande L. (2020). Endocrine-disrupting chemicals: implications for human health. Lancet Diabetes Endocrinol, 8(8), 703-718. https://doi.org/10.1016/s2213-8587(20)30129-7
[51] Costa HE, & Cairrao E. (2024). Effect of bisphenol A on the neurological system: a review update. Arch Toxicol, 98(1), 1-73. https://doi.org/10.1007/s00204-023-03614-0
[52] Borroni E, Pesatori AC, Bollati V, Buoli M, & Carugno M. (2022). Air pollution exposure and depression: A comprehensive updated systematic review and meta-analysis. Environ Pollut, 292(Pt A), 118245. https://doi.org/10.1016/j.envpol.2021.118245
[53] Braithwaite I, Zhang S, Kirkbride JB, Osborn DPJ, & Hayes JF. (2019). Air Pollution (Particulate Matter) Exposure and Associations with Depression, Anxiety, Bipolar, Psychosis and Suicide Risk: A Systematic Review and Meta-Analysis. Environ Health Perspect, 127(12), 126002. https://doi.org/10.1289/ehp4595
[54] Yang T, Wang J, Huang J, Kelly FJ, & Li G. (2023). Long-term Exposure to Multiple Ambient Air Pollutants and Association With Incident Depression and Anxiety. JAMA Psychiatry, 80(4), 305-313. https://doi.org/10.1001/jamapsychiatry.2022.4812
[55] Power MC, Kioumourtzoglou MA, Hart JE, Okereke OI, Laden F, & Weisskopf MG. (2015). The relation between past exposure to fine particulate air pollution and prevalent anxiety: observational cohort study. BMJ, 350, h1111. https://doi.org/10.1136/bmj.h1111
[56] Nobile F, Forastiere A, Michelozzi P, Forastiere F, & Stafoggia M. (2023). Long-term exposure to air pollution and incidence of mental disorders. A large longitudinal cohort study of adults within an urban area. Environ Int, 181, 108302. https://doi.org/10.1016/j.envint.2023.108302
[57] Lu P, Zhang Y, Xia G, Zhang W, Xu R, Wang C, et al. (2020). Attributable risks associated with hospital outpatient visits for mental disorders due to air pollution: A multi-city study in China. Environ Int, 143, 105906. https://doi.org/10.1016/j.envint.2020.105906
[58] Latham RM, Kieling C, Arseneault L, Rocha TB-M, Beddows A, Beevers SD, et al. (2021). Childhood exposure to ambient air pollution and predicting individual risk of depression onset in UK adolescents. J Psychiatr Res, 138, 60-67. https://doi.org/10.1016/j.jpsychires.2021.03.042
[59] Jáni M, Mikeš O, Marecek R, Brazdil M, & Mareckova K. (2024). Prenatal exposure to air pollution and maternal depression: Combined effects on brain aging and mental health in young adulthood. Prog Neuropsychopharmacol Biol Psychiatry, 134, 111062. https://doi.org/10.1016/j.pnpbp.2024.111062
[60] Gascon M, Sánchez-Benavides G, Dadvand P, Martínez D, Gramunt N, Gotsens X, et al. (2018). Long-term exposure to residential green and blue spaces and anxiety and depression in adults: A cross-sectional study. Environ Res, 162, 231-239. https://doi.org/10.1016/j.envres.2018.01.012
[61] Astell-Burt T, Mitchell R, & Hartig T. (2014). The association between green space and mental health varies across the lifecourse. A longitudinal study. J Epidemiol Community Health, 68(6), 578-583. https://doi.org/10.1136/jech-2013-203767
[62] Liu Z, Chen X, Cui H, Ma Y, Gao N, Li X, et al. (2023). Green space exposure on depression and anxiety outcomes: A meta-analysis. Environ Res, 231(Pt 3), 116303. https://doi.org/10.1016/j.envres.2023.116303
[63] Yao W, Zhang X, & Gong Q. (2021). The effect of exposure to the natural environment on stress reduction: A meta-analysis. Urban Forestry & Urban Greening, 57, 126932.
[64] Shezi B, Mendoza H, Govindasamy D, Casas L, Balakrishna Y, Bantjes J, et al. (2024). Proximity to public green spaces and depressive symptoms among South African residents: a population-based study. BMC Public Health, 24(1), 925. https://doi.org/10.1186/s12889-024-18385-1
[65] Park H, Kang C, Team A-C, & Kim H. (2024). Association between air pollution (PM10, PM2. 5), greenness and depression in older adults: a longitudinal study in South Korea. Epidemiol Psych Sci, 33, e71. https://doi.org/10.1017/S2045796024000684
[66] Ma J, Li C, Kwan M-P, & Chai Y. (2018). A multilevel analysis of perceived noise pollution, geographic contexts and mental health in Beijing. Int J Environ Res Public Health, 15(7), 1479. https://doi.org/10.3390/ijerph15071479
[67] Hahad O, Kuntic M, Al-Kindi S, Kuntic I, Gilan D, Petrowski K, et al. (2025). Noise and mental health: evidence, mechanisms, and consequences. J Expo Sci Environ Epidemiol, 35(1), 16-23. https://doi.org/10.1038/s41370-024-00642-5
[68] Okokon EO, Yli-Tuomi T, Turunen AW, Tiittanen P, Juutilainen J, & Lanki T. (2018). Traffic noise, noise annoyance and psychotropic medication use. Environ Int, 119, 287-294. https://doi.org/10.1016/j.envint.2018.06.034
[69] Tsimpida D, & Tsakiridi A. (2025). The Relationship between Noise Pollution and Depression and Implications for Healthy Aging: A Spatial Analysis Using Routinely Collected Primary Care Data. J Urban Health, 102(1), 101-112. https://doi.org/10.1007/s11524-024-00945-w
[70] Orban E, McDonald K, Sutcliffe R, Hoffmann B, Fuks KB, Dragano N, et al. (2016). Residential road traffic noise and high depressive symptoms after five years of follow-up: results from the Heinz Nixdorf recall study. Environ Health Perspect, 124(5), 578-585. https://doi.org/10.1289/ehp.1409400
[71] Tong S. (2017). Flooding-related displacement and mental health. Lancet Planet Health, 1(4), e124-e125. https://doi.org/10.1016/s2542-5196(17)30062-1
[72] Fernandez A, Black J, Jones M, Wilson L, Salvador-Carulla L, Astell-Burt T, et al. (2015). Flooding and mental health: a systematic mapping review. PLoS One, 10(4), e0119929. https://doi.org/10.1371/journal.pone.0119929
[73] Thompson R, Hornigold R, Page L, & Waite T. (2018). Associations between high ambient temperatures and heat waves with mental health outcomes: a systematic review. Public Health, 161, 171-191. https://doi.org/10.1016/j.puhe.2018.06.008
[74] Garfin DR, Thompson RR, Holman EA, Wong-Parodi G, & Silver RC. (2022). Association Between Repeated Exposure to Hurricanes and Mental Health in a Representative Sample of Florida Residents. JAMA Netw Open, 5(6), e2217251. https://doi.org/10.1001/jamanetworkopen.2022.17251
[75] To P, Eboreime E, & Agyapong VIO. (2021). The Impact of Wildfires on Mental Health: A Scoping Review. Behav Sci (Basel), 11(9). https://doi.org/10.3390/bs11090126
[76] Lõhmus M. (2018). Possible Biological Mechanisms Linking Mental Health and Heat-A Contemplative Review. Int J Environ Res Public Health, 15(7). https://doi.org/10.3390/ijerph15071515
[77] White BP, Breakey S, Brown MJ, Smith JR, Tarbet A, Nicholas PK, et al. (2023). Mental Health Impacts of Climate Change Among Vulnerable Populations Globally: An Integrative Review. Ann Glob Health, 89(1), 66. https://doi.org/10.5334/aogh.4105
[78] Jeong JA, Kim SA, Yang JH, & Shin MH. (2023). Urban-Rural Differences in the Prevalence of Depressive Symptoms in Korean Adults. Chonnam Med J, 59(2), 128-133. https://doi.org/10.4068/cmj.2023.59.2.128
[79] Xu C, Miao L, Turner D, & DeRubeis R. (2023). Urbanicity and depression: A global meta-analysis. J Affect Disord, 340, 299-311. https://doi.org/10.1016/j.jad.2023.08.030
[80] Pengcheng L, Longfei Z, Shujuan C, & Xiaojie W. (2021). Association between household overcrowding and depressive mood among Chinese residents. J Affect Disord, 290, 74-80. https://doi.org/10.1016/j.jad.2021.04.066
[81] Suglia SF, Duarte CS, & Sandel MT. (2011). Housing quality, housing instability, and maternal mental health. J Urban Health, 88, 1105-1116. https://doi.org/10.1007/s11524-011-9587-0
[82] Keen R, Chen JT, Slopen N, Sandel M, Copeland WE, & Tiemeier H. (2023). Prospective associations of childhood housing insecurity with anxiety and depression symptoms during childhood and adulthood. JAMA Pediatrics, 177(8), 818-826. https://doi.org/10.1001/jamapediatrics.2023.1733
[83] Zhang X, Ding L, Yang F, Qiao G, Gao X, Xiong Z, et al. (2024). Association between indoor air pollution and depression: a systematic review and meta-analysis of cohort studies. BMJ Open, 14(5), e075105. https://doi.org/10.1136/bmjopen-2023-075105
[84] Tran VV, Park D, & Lee YC. (2020). Indoor Air Pollution, Related Human Diseases, and Recent Trends in the Control and Improvement of Indoor Air Quality. Int J Environ Res Public Health, 17(8). https://doi.org/10.3390/ijerph17082927
[85] Harding CF, Pytte CL, Page KG, Ryberg KJ, Normand E, Remigio GJ, et al. (2020). Mold inhalation causes innate immune activation, neural, cognitive and emotional dysfunction. Brain Behav Immun, 87, 218-228. https://doi.org/10.1016/j.bbi.2019.11.006
[86] Wolkoff P. (2018). Indoor air humidity, air quality, and health - An overview. Int J Hyg Environ Health, 221(3), 376-390. https://doi.org/10.1016/j.ijheh.2018.01.015
[87] Psaltopoulou T, Sergentanis TN, Panagiotakos DB, Sergentanis IN, Kosti R, & Scarmeas N. (2013). Mediterranean diet, stroke, cognitive impairment, and depression: A meta-analysis. Ann Neurol, 74(4), 580-591. https://doi.org/10.1002/ana.23944
[88] Akbaraly TN, Brunner EJ, Ferrie JE, Marmot MG, Kivimaki M, & Singh-Manoux A. (2009). Dietary pattern and depressive symptoms in middle age. Br J Psychiatry, 195(5), 408-413. https://doi.org/10.1192/bjp.bp.108.058925
[89] Lane MM, Lotfaliany M, Hodge AM, O'Neil A, Travica N, Jacka FN, et al. (2023). High ultra-processed food consumption is associated with elevated psychological distress as an indicator of depression in adults from the Melbourne Collaborative Cohort Study. J Affect Disord, 335, 57-66. https://doi.org/10.1016/j.jad.2023.04.124
[90] Chapman DP, Whitfield CL, Felitti VJ, Dube SR, Edwards VJ, & Anda RF. (2004). Adverse childhood experiences and the risk of depressive disorders in adulthood. J Affect Disord, 82(2), 217-225. https://doi.org/10.1016/j.jad.2003.12.013
[91] Poletti S, Mazza MG, & Benedetti F. (2024). Inflammatory mediators in major depression and bipolar disorder. Transl Psychiatry, 14(1), 247. https://doi.org/10.1038/s41398-024-02921-z
[92] Trofin DM, Sardaru DP, Trofin D, Onu I, Tutu A, Onu A, et al. (2025). Oxidative Stress in Brain Function. Antioxidants (Basel), 14(3). https://doi.org/10.3390/antiox14030297
[93] Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, et al. (2010). A meta-analysis of cytokines in major depression. Biol Psychiatry, 67(5), 446-457. https://doi.org/10.1016/j.biopsych.2009.09.033
[94] Thomson EM. (2019). Air Pollution, Stress, and Allostatic Load: Linking Systemic and Central Nervous System Impacts. J Alzheimers Dis, 69(3), 597-614. https://doi.org/10.3233/jad-190015
[95] Khairova RA, Machado-Vieira R, Du J, & Manji HK. (2009). A potential role for pro-inflammatory cytokines in regulating synaptic plasticity in major depressive disorder. Int J Neuropsychopharmacol, 12(4), 561-578. https://doi.org/10.1017/s1461145709009924
[96] Savitz J. (2020). The kynurenine pathway: a finger in every pie. Mol Psychiatry, 25(1), 131-147. https://doi.org/10.1038/s41380-019-0414-4
[97] Correia AS, Cardoso A, & Vale N. (2023). Oxidative Stress in Depression: The Link with the Stress Response, Neuroinflammation, Serotonin, Neurogenesis and Synaptic Plasticity. Antioxidants (Basel), 12(2). https://doi.org/10.3390/antiox12020470
[98] Wāng Y. (2025). Ambient fine particulate matter provokes multiple modalities of cell death via perturbation of subcellular structures. Environ Int, 195, 109193. https://doi.org/10.1016/j.envint.2024.109193
[99] Yan MH, Wang X, & Zhu X. (2013). Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Radic Biol Med, 62, 90-101. https://doi.org/10.1016/j.freeradbiomed.2012.11.014
[100] Lopresti AL, Maker GL, Hood SD, & Drummond PD. (2014). A review of peripheral biomarkers in major depression: the potential of inflammatory and oxidative stress biomarkers. Prog Neuropsychopharmacol Biol Psychiatry, 48, 102-111. https://doi.org/10.1016/j.pnpbp.2013.09.017
[101] Stetler C, & Miller GE. (2011). Depression and hypothalamic-pituitary-adrenal activation: a quantitative summary of four decades of research. Psychosom Med, 73(2), 114-126. https://doi.org/10.1097/psy.0b013e31820ad12b
[102] Raymond C, Marin MF, Majeur D, & Lupien S. (2018). Early child adversity and psychopathology in adulthood: HPA axis and cognitive dysregulations as potential mechanisms. Prog Neuropsychopharmacol Biol Psychiatry, 85, 152-160. https://doi.org/10.1016/j.pnpbp.2017.07.015
[103] Dienes KA, Hazel NA, & Hammen CL. (2013). Cortisol secretion in depressed, and at-risk adults. Psychoneuroendocrinology, 38(6), 927-940. https://doi.org/10.1016/j.psyneuen.2012.09.019
[104] Guarnotta V, Amodei R, Frasca F, Aversa A, & Giordano C. (2022). Impact of chemical endocrine disruptors and hormone modulators on the endocrine system. Int J Mol. Sci, 23(10), 5710. https://doi.org/10.3390/ijms23105710
[105] Wu D, Chen Q, Chen X, Han F, Chen Z, & Wang Y. (2023). The blood-brain barrier: structure, regulation, and drug delivery. Signal Transduct Target Ther, 8(1), 217. https://doi.org/10.1038/s41392-023-01481-w
[106] Galea I. (2021). The blood–brain barrier in systemic infection and inflammation. Cell Mol Immunol, 18(11), 2489-2501. https://doi.org/10.1038/s41423-021-00757-x
[107] Li H, Guo X, Li P, Gao X, Song X, Chen X, et al. (2024). Particulate matter induces depression-like behavior through systemic inflammation and brain-derived neurotrophic factors. Environ Int, 194, 108883. https://doi.org/10.1016/j.envint.2024.108883
[108] Zhao C, Xie P, Yong T, Huang W, Liu J, Wu D, et al. (2021). Airborne fine particulate matter induces cognitive and emotional disorders in offspring mice exposed during pregnancy. Sci Bull (Beijing), 66(6), 578-591. https://doi.org/10.1016/j.scib.2020.08.036
[109] Foster JA, & Neufeld K-AM. (2013). Gut–brain axis: how the microbiome influences anxiety and depression. Trends Neurosci, 36(5), 305-312. https://doi.org/10.1016/j.tins.2013.01.005
[110] Singh S, Sharma P, Pal N, Kumawat M, Shubham S, Sarma DK, et al. (2022). Impact of Environmental Pollutants on Gut Microbiome and Mental Health via the Gut-Brain Axis. Microorganisms, 10(7). https://doi.org/10.3390/microorganisms10071457
[111] Chinna Meyyappan A, Forth E, Wallace CJK, & Milev R. (2020). Effect of fecal microbiota transplant on symptoms of psychiatric disorders: a systematic review. BMC Psychiatry, 20(1), 299. https://doi.org/10.1186/s12888-020-02654-5
[112] Shandilya S, Kumar S, Kumar Jha N, Kumar Kesari K, & Ruokolainen J. (2022). Interplay of gut microbiota and oxidative stress: Perspective on neurodegeneration and neuroprotection. J Adv Res, 38, 223-244. https://doi.org/10.1016/j.jare.2021.09.005
[113] Tomita A, Vandormael AM, Cuadros D, Di Minin E, Heikinheimo V, Tanser F, et al. (2017). Green environment and incident depression in South Africa: a geospatial analysis and mental health implications in a resource-limited setting. Lancet Planet Health, 1(4), e152-e162. https://doi.org/10.1016/s2542-5196(17)30063-3
[114] Guo Y, Su JG, Dong Y, & Wolch J. (2019). Application of land use regression techniques for urban greening: An analysis of Tianjin, China. Urban Forestry & Urban Greening, 38, 11-21.
[115] Rosenman R, Tennekoon V, & Hill LG. (2011). Measuring bias in self-reported data. Int J Behav Healthc Res, 2(4), 320-332. https://doi.org/10.1504/IJBHR.2011.043414
[116] Ryan PB, Burke TA, Cohen Hubal EA, Cura JJ, & McKone TE. (2007). Using biomarkers to inform cumulative risk assessment. Environ Health Perspect, 115(5), 833-840. https://doi.org/10.1289/ehp.9334
[117] Manea L, Gilbody S, & McMillan D. (2015). A diagnostic meta-analysis of the Patient Health Questionnaire-9 (PHQ-9) algorithm scoring method as a screen for depression. Gen Hosp Psychiatry, 37(1), 67-75. https://doi.org/10.1016/j.genhosppsych.2014.09.009
[118] Vilagut G, Forero CG, Barbaglia G, & Alonso J. (2016). Screening for depression in the general population with the Center for Epidemiologic Studies Depression (CES-D): a systematic review with meta-analysis. PLoS One, 11(5), e0155431. https://doi.org/10.1371/journal.pone.0155431
[119] Adams AS, Soumerai SB, Lomas J, & Ross-Degnan D. (1999). Evidence of self-report bias in assessing adherence to guidelines. Int J Qual Health Care, 11(3), 187-192. https://doi.org/10.1093/intqhc/11.3.187
[120] Thombs BD, Kwakkenbos L, Levis AW, & Benedetti A. (2018). Addressing overestimation of the prevalence of depression based on self-report screening questionnaires. Cmaj, 190(2), E44-E49. https://doi.org/10.1503/cmaj.170691
[121] Yurkovich M, Avina-Zubieta JA, Thomas J, Gorenchtein M, & Lacaille D. (2015). A systematic review identifies valid comorbidity indices derived from administrative health data. J Clin Epidemiol, 68(1), 3-14. https://doi.org/10.1016/j.jclinepi.2014.09.010
[122] Fewell Z, Davey Smith G, & Sterne JA. (2007). The impact of residual and unmeasured confounding in epidemiologic studies: a simulation study. Am J Epidemiol, 166(6), 646-655. https://doi.org/10.1093/aje/kwm165
[123] Gasparrini A, Armstrong B, & Kenward MG. (2010). Distributed lag non‐linear models. Stat Med, 29(21), 2224-2234. https://doi.org/10.1002/sim.3940
[124] Carrico C, Gennings C, Wheeler DC, & Factor-Litvak P. (2015). Characterization of weighted quantile sum regression for highly correlated data in a risk analysis setting. J Agric Biol Environ Stat, 20, 100-120. https://doi.org/10.1007/s13253-014-0180-3
[125] Bobb JF, Valeri L, Claus Henn B, Christiani DC, Wright RO, Mazumdar M, et al. (2015). Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures. Biostatistics, 16(3), 493-508. https://doi.org/10.1093/biostatistics/kxu058
[126] Hu H, Zhao J, Savitz DA, Prosperi M, Zheng Y, & Pearson TA. (2020). An external exposome-wide association study of hypertensive disorders of pregnancy. Environ Int, 141, 105797. https://doi.org/10.1016/j.envint.2020.105797
[127] Zhan Y, Luo Y, Deng X, Grieneisen ML, Zhang M, & Di B. (2018). Spatiotemporal prediction of daily ambient ozone levels across China using random forest for human exposure assessment. Environ Pollut, 233, 464-473. https://doi.org/10.1016/j.envpol.2017.10.029
[128] Zou H, & Hastie T. (2005). Regularization and variable selection via the elastic net. J R Stat Soc Ser B Stat Methodol, 67(2), 301-320. https://doi.org/10.1111/j.1467-9868.2005.00503.x
[129] Zhang Z, Zhao Y, Canes A, Steinberg D, & Lyashevska O. (2019). Predictive analytics with gradient boosting in clinical medicine. Ann Transl Med, 7(7), 152. https://doi.org/10.21037/atm.2019.03.29
[130] Fu R, & Kim SJ. (2021). Inferring causality from observational studies: the role of instrumental variable analysis. Kidney Int, 99(6), 1303-1308. https://doi.org/10.1016/j.kint.2021.03.018
[131] Ball P. (2021). Nobel-winning 'natural experiments' approach made economics more robust. Nature, 10.1038/d41586-021-02799-7. https://doi.org/10.1038/d41586-021-02799-7
[132] Haukoos JS, & Lewis RJ. (2015). The propensity score. JAMA 314(15), 1637-1638. https://doi.org/10.1001/jama.2015.13480
[133] Santini ZI, Jose PE, Cornwell EY, Koyanagi A, Nielsen L, Hinrichsen C, et al. (2020). Social disconnectedness, perceived isolation, and symptoms of depression and anxiety among older Americans (NSHAP): a longitudinal mediation analysis. Lancet Public Health, 5(1), e62-e70. https://doi.org/10.1016/s2468-2667(19)30230-0
[134] Emdin CA, Khera AV, & Kathiresan S. (2017). Mendelian randomization. JAMA, 318(19), 1925-1926. https://doi.org/10.1001/jama.2017.17219
Type
Published
Data Availability Statement
No new data were generated or analyzed in this study. All data discussed in this review are available in the published literature and cited accordingly.
Issue
Section
License
Copyright (c) 2025 Brain Conflux

This work is licensed under a Creative Commons Attribution 4.0 International License.