Integrating Machine Learning and Multi-omics to Identify Key SUMOylation Molecular Signature in Sarcoma
DOI:
https://doi.org/10.71321/lcflx.00001Keywords:
SUMOylation, Sarcoma, KIAA1586, Prognosis, BioinformaticsAbstract
Background: Sarcoma (SARC) is a rare and heterogeneous cancer originating from mesenchymal tissue. Due to its complex molecular mechanisms and limited treatment options, patients often have poor prognoses. Protein SUMOylation is an important post-translational modification process that plays a key role in regulating cellular functions and is closely related to the onset and progression of various cancers. However, the specific mechanisms by which SUMOylation affects SARC progression are not fully understood.
Methods: In this study, comprehensive bioinformatics approaches were utilized to analyze multiple datasets of SARC samples. By screening and identifying SUMOylation-related genes, we further explored the expression patterns of these genes in SARC and their association with prognosis and then constructed a consensus prognostic model. In particular, we focused on the KIAA1586 gene, which has attracted increasing attention in cancer biology, and conducted an in-depth study of its role in SARC.
Results: The study revealed that 19 SUMOylation-related genes were significantly correlated with the prognosis of SARC. Subsequently, the consensus prognostic model constructed by ridge regression could accurately predict the survival of patients in multiple data sets. Afterward, we identified KIAA1586 as the key gene, and its expression level was closely related to the prognosis of patients. GSEA enrichment analysis demonstrated that KIAA1586 might affect the progression of SARC by regulating the cell cycle and immune-related pathways, providing new insights into the molecular mechanism of SARC.
Conclusion: We have constructed a SUMOylation signature model that can accurately predict the prognosis of SARC patients, and identified KIAA1586 as a key SUMOylation gene that plays a crucial role in the onset and development of tumors by participating in cell cycle regulation and immune suppression.
References
Chaudhary H, D’Angelo S. Role of Virus-Directed therapy in soft tissue sarcoma. Curr Treat Options Oncol. (2022) 23:404–14. doi: 10.1007/s11864-022-00956-2
HaDuong JH, Martin AA, Skapek SX, Mascarenhas L. Sarcomas. Pediatr Clin North Am. (2015) 62:179–200. doi: 10.1016/j.pcl.2014.09.012
Dajsakdipon T, Siripoon T, Ngamphaiboon N, Ativitavas T, Dejthevaporn T. Immunotherapy and biomarkers in sarcoma. Curr Treat Options Oncol. (2022) 23:415–38. doi: 10.1007/s11864-022-00944-6
Hall F, Villalobos V, Wilky B. Future directions in soft tissue sarcoma treatment. Curr Probl Cancer. (2019) 43:300–7. doi: 10.1016/j.currproblcancer.2019.06.004
Nakata E, Fujiwara T, Kunisada T, Ito T, Takihira S, Ozaki T. Immunotherapy for sarcomas. Jpn J Clin Oncol. (2021) 51:523–37. doi: 10.1093/jjco/hyab005
Pollack SM, Ingham M, Spraker MB, Schwartz GK. Emerging targeted and Immune-Based therapies in sarcoma. J Clin Oncol. (2018) 36:125–35. doi: 10.1200/JCO.2017.75.1610
Venne A.S., Kollipara L., Zahedi R.P. The next level of complexity: Crosstalk of posttranslational modifications. Proteomics. 2014;14:513–524. doi: 10.1002/pmic.201300344.
Han Z.J., Feng Y.H., Gu B.H., Li Y.M., Chen H. The post - translational modification, SUMOylation, and cancer (Review) Int. J. Oncol. 2018;52:1081–1094. doi: 10.3892/ijo.2018.4280.
Vertegaal A.C.O. Signalling mechanisms and cellular functions of SUMO. Nat. Rev. Mol. Cell Biol. 2022;23:715–731. doi: 10.1038/s41580-022-00500-y.
Du L., Li Y.-J., Fakih M., Wiatrek R.L., Duldulao M., Chen Z., Chu P., Garcia - Aguilar J., Chen Y. Role of SUMO activating enzyme in cancer stem cell maintenance and self - renewal. Nat. Commun. 2016;7:12326. doi: 10.1038/ncomms12326.
Seeler J.-S., Dejean A. SUMO and the robustness of cancer. Nat. Rev. Cancer. 2017;17:184–197. doi: 10.1038/nrc.2016.143.
Eifler K., Vertegaal A.C. SUMOylation - Mediated Regulation of Cell Cycle Progression and Cancer. Trends Biochem. Sci. 2015;40:779–793. doi: 10.1016/j.tibs.2015.09.006.
Moschos S.J., Jukic D.M., Athanassiou C., Bhargava R., Dacic S., Wang X., Kuan S.-F., Fayewicz S.L., Galambos C., Acquafondata M., et al. Expression analysis of Ubc9, the single small ubiquitin - like modifier (SUMO) E2 conjugating enzyme, in normal and malignant tissues. Hum. Pathol. 2010;41:1286–1298. doi: 10.1016/j.humpath.2010.02.007.
McDoniels - Silvers A.L., Nimri C.F., Stoner G.D., Lubet R.A., You M. Differential gene expression in human lung adenocarcinomas and squamous cell carcinomas. Clin. Cancer Res. 2002;8:1127–1138.
Tomasi M.L., Tomasi I., Ramani K., Pascale R.M., Xu J., Giordano P., Mato J.M., Lu S.C. S - adenosyl methionine regulates ubiquitin - conjugating enzyme 9 protein expression and SUMOylation in murine liver and human cancers. Hepatology. 2012;56:982–993. doi: 10.1002/hep.25701.
Jeschke J, Bizet M, Desmedt C, Calonne E, Dedeurwaerder S, Garaud S, Koch A, Larsimont D, Salgado R, Van den Eynden G, Willard Gallo K, Bontempi G, Defrance M, Sotiriou C, Fuks F. DNA methylation-based immune response signature improves patient diagnosis in multiple cancers. J Clin Invest. 2017 Aug 1;127(8):3090-3102. doi: 10.1172/JCI91095.
Xu L, Deng C, Pang B, Zhang X, Liu W, Liao G, Yuan H, Cheng P, Li F, Long Z, Yan M, Zhao T, Xiao Y, Li X. TIP: A Web Server for Resolving Tumor Immunophenotype Profiling. Cancer Res. 2018 Dec 1;78(23):6575-6580. doi: 10.1158/0008-5472.CAN-18-0689.
Shi J, Wei X, Xun Z, Ding X, Liu Y, Liu L, Ye Y. The Web-Based Portal SpatialTME Integrates Histological Images with Single-Cell and Spatial Transcriptomics to Explore the Tumor Microenvironment. Cancer Res. 2024 Apr 15;84(8):1210-1220. doi: 10.1158/0008-5472.CAN-23-2650.
Xun, Z., Ding, X., Zhang, Y. et al. Reconstruction of the tumor spatial microenvironment along the malignant-boundary-nonmalignant axis. Nat Commun 14, 933 (2023). https://doi.org/10.1038/s41467-023-36560-7.
Zheng R, Wan C, Mei S, Qin Q, Wu Q, Sun H, Chen CH, Brown M, Zhang X, Meyer CA, Liu XS. Cistrome Data Browser: expanded datasets and new tools for gene regulatory analysis. Nucleic Acids Res, 2018 Nov 20. Doi: 10.1093/nar/gky1094
Mei S, Qin Q, Wu Q, Sun H, Zheng R, Zang C, Zhu M, Wu J, Shi X, Taing L, Liu T, Brown M, Meyer CA, Liu XS. Cistrome data browser: a data portal for ChIP-Seq and chromatin accessibility data in human and mouse. Nucleic Acids Res, 2017 Jan 4;45(D1):D658-D662. Doi: 10.1093/nar/gkw983.
Wang S, Sun H, Ma J, Zang C, Wang C, Wang J, Tang Q, Meyer CA, Zhang Y, Liu XS. Target analysis by integration of transcriptome and ChIP-seq data with BETA. Nat Protoc. 2013 Dec;8(12):2502-15. doi: 10.1038/nprot.2013.150.
Yang H, Gao S, Chen J, Lou W. UBE2I promotes metastasis and correlates with poor prognosis in hepatocellular carcinoma. Cancer Cell Int. 2020;20:234. Published 2020 Jun 12. doi:10.1186/s12935-020-01311-x
Ahmed A, Shamsi A, Mohammad T, Hasan GM, Islam A, Hassan MI. Aurora B kinase: a potential drug target for cancer therapy. J Cancer Res Clin Oncol. 2021;147(8):2187-2198. doi:10.1007/s00432-021-03669-5
Liu YP, Guo G, Ren M, et al. NDC1 promotes hepatocellular carcinoma tumorig nesis by targeting BCAP31 to activate PI3K/AKT signaling. J Biochem Mol Toxicol. 2024;38(2):e23647. doi:10.1002/jbt.23647
Sun J, Wu K, Chen S, Jiang S, Chen Y, Duan C. UHRF2 promotes Hepatocellular Carcinoma Progression by Upregulating ErbB3/Ras/Raf Signaling Pathway. Int J Med Sci. 2021;18(14):3097-3105. doi:10.7150/ijms.60030
Li L, Duan Q, Zeng Z, et al. UHRF2 promotes intestinal tumorigenesis through stabilization of TCF4 mediated Wnt/β-catenin signaling. Int J Cancer. 2020;147(8):2239-2252. doi:10.1002/ijc.33036
Cui Y, Jiang N. CDCA8 Facilitates Tumor Proliferation and Predicts a Poor Prognosis in Hepatocellular Carcinoma. Appl Biochem Biotechnol. 2024;196(3):1481-1492. doi:10.1007/s12010-023-04603-w
Li B, Liu B, Zhang X, Liu H, He L. KIF18B promotes the proliferation of pancreatic ductal adenocarcinoma via activating the expression of CDCA8. J Cell Physiol. 2020;235(5):4227-4238. doi:10.1002/jcp.29201
Chang JL, Chen TH, Wang CF, et al. Borealin/Dasra B is a cell cycle-regulated chromosomal passenger protein and its nuclear accumulation is linked to poor prognosis for human gastric cancer. Exp Cell Res. 2006;312(7):962-973. doi:10.1016/j.yexcr.2005.12.015
Matthews HK, Bertoli C, de Bruin RAM. Cell cycle control in cancer. Nat Rev Mol Cell Biol. 2022;23(1):74-88. doi:10.1038/s41580-021-00404-3
Chaimowitz NS, Smith MR, Forbes Satter LR. JAK/STAT defects and immune dysregulation, and guiding therapeutic choices. Immunol Rev. 2024;322(1):311 - 328. doi:10.1111/imr.13312
Capece D, Verzella D, Flati I, Arboretto P, Cornice J, Franzoso G. NF-κB: blending metabolism, immunity, and inflammation. Trends Immunol. 2022;43(9):757 - 775. doi:10.1016/j.it.2022.07.004
Sukocheva OA, Neganova ME, Aleksandrova Y, et al. Signaling controversy and future therapeutical perspectives of targeting sphingolipid network in cancer immune editing and resistance to tumor necrosis factor - α immunotherapy. Cell Commun Signal. 2024;22(1):251. doi:10.1186/s12964-024-01626-6
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Life Conflux

This work is licensed under a Creative Commons Attribution 4.0 International License.