Multiscale Modeling of Transcranial Alternating Current Stimulation:Induced Electric Field and Cellular Responses

Authors

  • Guosheng Yi School of Electrical and Information Engineering, Tianjin University
  • Xinbo Hou School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072, China.
  • Xuelin Huang School of Electrical and Information Engineering, Tianjin University
  • Fu Zhang School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072, China.
  • Jintao Chen School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072, China.
  • Shen Li Brain Assessment & Intervention Laboratory, Tianjin Anding Hospital, Mental Health Center, Tianjin Medical University

DOI:

https://doi.org/10.71321/wyq6hf65

Keywords:

Transcranial alternating current stimulation, computational modeling, induced electric field, multi-compartmental neuronal models, membrane polarization, spike entrainment

Abstract

Transcranial alternating current stimulation (tACS) is a non-invasive neuromodulation technique that generates weak oscillatory electric fields (EFs) in the brain and has shown promise for probing neural oscillations and treating neuropsychiatric disorders. However, its effects on neural activity remain highly variable across studies, and controversies persist regarding whether conventional tACS intensities can genuinely entrain neuronal firing. Experimental approaches alone have limited capacity to resolve these inconsistencies. Computational modeling provides a powerful complementary framework to quantify induced EFs, predict cellular responses, and generate mechanistic hypotheses. In this review, we focus on multiscale models spanning from macroscopic realistic head models to microscopic multi-compartmental neuronal models. Head models elucidate how anatomy, tissue conductivity, stimulation parameters, and electrode montage shape the spatial distribution of tACS-induced fields, while multi-compartmental models reveal how EFs, neuronal morphology, biophysics, and synaptic inputs govern cell-type-specific polarization and spike entrainment. We highlight key insights, unresolved controversies, and emerging trends, including the integration of head and neuronal models, network-level simulations, and the use of artificial intelligence to bridge scales. By critically synthesizing advances in multiscale modeling, we argue that coupling computational frameworks with experimental recordings is essential for explaining the diversity of tACS effects and for translating mechanistic insights into individualized, clinically effective interventions.

References

[1] Antal A, Paulus W. (2013). Transcranial alternating current stimulation (tACS). Front Hum Neurosci, 7, 317. http://doi.org/10.3389/fnhum.2013.00317

[2] Van Hoornweder S, Stagg CJ, Wischnewski M. (2025). Personalizing transcranial electrical stimulation. Trends Neurosci, 48(9), 663-678. https://doi.org/10.1016/j.tins.2025.07.007

[3] Wischnewski M, Alekseichuk I, Opitz A. (2023). Neurocognitive, physiological, and biophysical effects of transcranial alternating current stimulation. Trends Cogn Sci, 27(2),189-205. https://doi.org/10.1016/j.tics.2022.11.013

[4] Riddle J, Frohlich F. (2021). Targeting neural oscillations with transcranial alternating current stimulation. Brain Res, 1765, 147491. https://doi.org/10.1016/j.brainres.2021.147491

[5] Agboada D, Zhao Z, Wischnewski M. (2025). Neuroplastic effects of transcranial alternating current stimulation (tACS): from mechanisms to clinical trials. Front Hum Neurosci, 19, 1548478. https://doi.org/10.3389/fnhum.2025.1548478

[6] Gholamali Nezhad F, Martin J, Tassone VK, Swiderski A, Demchenko I, Khan S, et al. (2024). Transcranial alternating current stimulation for neuropsychiatric disorders: a systematic review of treatment parameters and outcomes. Front Psychiatry, 15, 1419243. https://doi.org/10.3389/fpsyt.2024.1419243

[7] Biačková N, Adamová A, Klírová M. (2024). Transcranial alternating current stimulation in affecting cognitive impairment in psychiatric disorders: a review. Eur Arch Psychiatry Clin Neurosci, 274(4), 803-826. https://doi.org/10.1007/s00406-023-01687-7

[8] Liu A, Vöröslakos M, Kronberg G, Henin S, Krause MR, Huang Y, et al. (2018). Immediate neurophysiological effects of transcranial electrical stimulation. Nat Commun, 9(1), 5092. https://doi.org/10.1038/s41467-018-07233-7

[9] Anastassiou CA, Perin R, Markram H, Koch C. (2011). Ephaptic coupling of cortical neurons. Nat Neurosci, 14(2), 217-23. https://doi.org/10.1038/nn.2727

[10] Deans JK, Powell AD, Jefferys JG. (2007). Sensitivity of coherent oscillations in rat hippocampus to AC electric fields. J Physiol, 583(Pt 2), 555-65. https://doi.org/10.1113/jphysiol.2007.137711

[11] Ozen S, Sirota A, Belluscio MA, Anastassiou CA, Stark E, Koch C, et al. (2010). Transcranial electric stimulation entrains cortical neuronal populations in rats. J Neurosci, 30(34), 11476-85. https://doi.org/10.1523/JNEUROSCI.5252-09.2010

[12] Francis JT, Gluckman BJ, Schiff SJ. (2003). Sensitivity of neurons to weak electric fields. J Neurosci, 23(19), 7255-61. https://doi.org/10.1523/JNEUROSCI.23-19-07255.2003

[13] Lee SY, Kozalakis K, Baftizadeh F, Campagnola L, Jarsky T, Koch C, et al. (2024). Cell-class-specific electric field entrainment of neural activity. Neuron, 112(15), 2614-2630.e5. https://doi.org/10.1016/j.neuron.2024.05.009

[14] Fröhlich F, McCormick DA. (2010). Endogenous electric fields may guide neocortical network activity. Neuron, 67(1), 129-43. https://doi.org/10.1016/j.neuron.2010.06.005

[15] Huang WA, Stitt IM, Negahbani E, Passey DJ, Ahn S, Davey M, et al. (2021). Transcranial alternating current stimulation entrains alpha oscillations by preferential phase synchronization of fast-spiking cortical neurons to stimulation waveform. Nat Commun, 12(1), 3151. https://doi.org/10.1038/s41467-021-23021-2

[16] Krause MR, Vieira PG, Csorba BA, Pilly PK, Pack CC. (2019). Transcranial alternating current stimulation entrains single-neuron activity in the primate brain. Proc Natl Acad Sci U S A, 116(12), 5747-5755. https://doi.org/10.1073/pnas.1815958116

[17] Vieira PG, Krause MR, Pack CC. (2020). tACS entrains neural activity while somatosensory input is blocked. PLoS Biology, 18(10), e3000834. https://doi.org/10.1371/journal.pbio.3000834

[18] Johnson L, Alekseichuk I, Krieg J, Doyle A, Yu Y, Vitek J, et al. (2020). Dose-dependent effects of transcranial alternating current stimulation on spike timing in awake nonhuman primates. Sci Adv, 6(36), eaaz2747. https://doi.org/10.1126/sciadv.aaz2747

[19] Wischnewski M, Tran H, Zhao Z, Shirinpour S, Haigh ZJ, Rotteveel J, et al. (2024). Induced neural phase precession through exogenous electric fields. Nat Commun, 15(1), 1687. https://doi.org/10.1038/s41467-024-45898-5

[20] Krause MR, Vieira PG, Thivierge JP, Pack CC. (2022). Brain stimulation competes with ongoing oscillations for control of spike timing in the primate brain. PLoS Biol, 20(5), e3001650. https://doi.org/10.1371/journal.pbio.3001650

[21] Beliaeva V, Polania R. (2020). Can low-intensity tACS genuinely entrain neural activity in vivo? Brain Stimul, 13(6), 1796-1799. https://doi.org/10.1016/j.brs.2020.10.002

[22] Khatoun A, Asamoah B, Mc Laughlin M. (2019). How does transcranial alternating current stimulation entrain single-neuron activity in the primate brain? Proc Natl Acad Sci U S A, 116(45), 22438-22439. https://doi.org/10.1073/pnas.1912927116

[23] Vöröslakos M, Takeuchi Y, Brinyiczki K, Zombori T, Oliva A, Fernández-Ruiz A, et al. (2018). Direct effects of transcranial electric stimulation on brain circuits in rats and humans. Nat Commun, 9(1), 483. https://doi.org/10.1038/s41467-018-02928-3

[24] Lafon B, Henin S, Huang Y, Friedman D, Melloni L, Thesen T, et al. (2017). Low frequency transcranial electrical stimulation does not entrain sleep rhythms measured by human intracranial recordings. Nat Commun, 8(1), 1199. https://doi.org/10.1038/s41467-017-01045-x

[25] Zuidema W, French RM, Alhama RG, Ellis K, O'Donnell TJ, Sainburg T, et al. (2020). Five ways in which computational modeling can help advance cognitive science: lessons from artificial grammar learning. Top Cogn Sci, 12(3), 925-941. https://doi.org/10.1111/tops.12474

[26] Aberra AS, Peterchev AV, Grill WM. (2018). Biophysically realistic neuron models for simulation of cortical stimulation. J Neural Eng, 15(6), 066023. https://doi.org/10.1088/1741-2552/aadbb1

[27] Madadi Asl M, Valizadeh A. (2025). Entrainment by transcranial alternating current stimulation: Insights from models of cortical oscillations and dynamical systems theory. Phys Life Rev, 53, 147-176. https://doi.org/10.1016/j.plrev.2025.03.008

[28] Bland NS, Sale MV. (2019). Current challenges: the ups and downs of tACS. Exp Brain Res, 237(12), 3071-3088. https://doi.org/10.1007/s00221-019-05666-0

[29] Beliaeva V, Savvateev I, Zerbi V, Polania R. (2021). Toward integrative approaches to study the causal role of neural oscillations via transcranial electrical stimulation. Nat Commun, 12(1), 2243. https://doi.org/10.1038/s41467-021-22468-7

[30] Sasaki R. (2025). Modulating cortico-cortical networks with transcranial alternating current stimulation: a minireview. Phys Ther Res, 28(1), 1-8. https://doi.org/10.1298/ptr.R0035

[31] He Y, Liu S, Chen L, Ke Y, Ming D. (2023). Neurophysiological mechanisms of transcranial alternating current stimulation. Front Neurosci, 17, 1091925. https://doi.org/10.3389/fnins.2023.1091925

[32] Opitz A, Falchier A, Yan CG, Yeagle EM, Linn GS, Megevand P, et al. (2016). Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates. Sci Rep, 6, 31236. https://doi.org/10.1038/srep31236

[33] Sadeghihassanabadi F, Misselhorn J, Gerloff C, Zittel S. (2022). Optimizing the montage for cerebellar transcranial alternating current stimulation (tACS): a combined computational and experimental study. J Neural Eng, 19(2), 026060. https://doi.org/10.1088/1741-2552/ac676f

[34] Van Hoornweder S, Cappozzo V, De Herde L, Puonti O, Siebner HR, Meesen RLJ, et al. (2024). Head and shoulders-The impact of an extended head model on the simulation and optimization of transcranial electric stimulation. Imaging Neurosci (Camb), 2, imag-2-00379. https://doi.org/10.1162/imag_a_00379

[35] Kasten FH, Duecker K, Maack MC, Meiser A, Herrmann CS. (2019). Integrating electric field modeling and neuroimaging to explain inter-individual variability of tACS effects. Nat Commun, 10(1), 5427. https://doi.org/10.1038/s41467-019-13417-6

[36] Miranda PC, Callejón-Leblic MA, Salvador R, Ruffini G. (2018). Realistic modeling of transcranial current stimulation: the electric field in the brain. Curr Opin Biomed Eng, 8, 20-27. https://doi.org/10.1016/j.cobme.2018.09.002

[37] Hunold A, Haueisen J, Nees F, Moliadze V. (2023). Review of individualized current flow modeling studies for transcranial electrical stimulation. J Neurosci Res, 101(4), 405-423. https://doi.org/10.1002/jnr.25154

[38] Huang Y, Datta A, Bikson M, Parra LC. (2019). Realistic volumetric-approach to simulate transcranial electric stimulation-ROAST-a fully automated open-source pipeline. J Neural Eng, 16(5), 056006. https://doi.org/10.1088/1741-2552/ab208d

[39] Thielscher A, Antunes A, Saturnino GB. (2015). Field modeling for transcranial magnetic stimulation: a useful tool to understand the physiological effects of TMS? Conf Proc IEEE Eng Med Biol Soc, 2015, 222-225. https://doi.org/10.1109/EMBC.2015.7318340

[40] Nielsen JD, Madsen KH, Puonti O, Siebner HR, Bauer C, Madsen CG, et al. (2018). Automatic skull segmentation from MR images for realistic volume conductor models of the head: Assessment of the state-of-the-art. Neuroimage, 174, 587-598. https://doi.org/10.1016/j.neuroimage.2018.03.001

[41] Lee C, Jung YJ, Lee SJ, Im CH. (2017). COMETS2: An advanced MATLAB toolbox for the numerical analysis of electric fields generated by transcranial direct current stimulation. J Neurosci Methods, 277, 56-62. https://doi.org/10.1016/j.jneumeth.2016.12.008

[42] Dannhauer M, Brooks D, Tucker D, MacLeod R. (2012). A pipeline for the simulation of transcranial direct current stimulation for realistic human head models using SCIRun/BioMesh3D. Annu Int Conf IEEE Eng Med Biol Soc, 2012, 5486-5489. https://doi.org/10.1109/EMBC.2012.6347236

[43] Wagner S, Rampersad SM, Aydin Ü, Vorwerk J, Oostendorp TF, Neuling T, et al. (2014). Investigation of tDCS volume conduction effects in a highly realistic head model. J Neural Eng, 11(1), 016002. https://doi.org/10.1088/1741-2560/11/1/016002

[44] Ruffini G, Wendling F, Merlet I, Molaee-Ardekani B, Mekonnen A, Salvador R, et al. (2013). Transcranial current brain stimulation (tCS): models and technologies. IEEE Trans Neural Syst Rehabil Eng, 21(3), 333-45. https://doi.org/10.1109/TNSRE.2012.2200046

[45] Gaugain G, Quéguiner L, Bikson M, Sauleau R, Zhadobov M, Modolo J, et al. (2023). Quasi-static approximation error of electric field analysis for transcranial current stimulation. J Neural Eng, 20(1), 016027. https://doi.org/10.1088/1741-2552/acb14d

[46] Huang Y, Liu AA, Lafon B, Friedman D, Dayan M, Wang X, et al. (2017). Measurements and models of electric fields in the in vivo human brain during transcranial electric stimulation. Elife, 6, e18834. https://doi.org/10.7554/eLife.18834

[47] Opitz A, Yeagle E, Thielscher A, Schroeder C, Mehta AD, Milham MP. (2018). On the importance of precise electrode placement for targeted transcranial electric stimulation. Neuroimage, 181, 560-567. https://doi.org/10.1016/j.neuroimage.2018.07.027

[48] Berger TA, Wischnewski M, Opitz A, Alekseichuk I. (2025). Human head models and populational framework for simulating brain stimulations. Sci Data, 12(1), 516. https://doi.org/10.1038/s41597-025-04886-0

[49] McCann H, Pisano G, Beltrachini L. (2019). Variation in reported human head tissue electrical conductivity values. Brain Topogr, 32(5), 825-858. https://doi.org/10.1007/s10548-019-00710-2

[50] Alekseichuk I, Pabel SC, Antal A, Paulus W. (2017). Intrahemispheric theta rhythm desynchronization impairs working memory. Restor Neurol Neurosci, 35(2), 147-158. https://doi.org/10.3233/RNN-160714

[51] Alekseichuk I, Falchier AY, Linn G, Xu T, Milham MP, Schroeder CE, et al. (2019). Electric field dynamics in the brain during multi-electrode transcranial electric stimulation. Nat Commun, 10(1), 2573. https://doi.org/10.1038/s41467-019-10581-7

[52] Lee S, Shirinpour S, Alekseichuk I, Perera N, Linn G, Schroeder CE, et al. (2023). Predicting the phase distribution during multi-channel transcranial alternating current stimulation in silico and in vivo. Comput Biol Med, 166, 107516. https://doi.org/10.1016/j.compbiomed.2023.107516

[53] Alekseichuk I, Mantell K, Shirinpour S, Opitz A. (2019). Comparative modeling of transcranial magnetic and electric stimulation in mouse, monkey, and human. Neuroimage, 194, 136-148. https://doi.org/10.1016/j.neuroimage.2019.03.044

[54] Ma WW, Wang FX, Yi YY, Huang Y, Li XY, Liu YO, et al. (2024). Mapping the electric field of high-definition transcranial electrical stimulation across the lifespan. Sci Bull, 69(24), 3876-3888. https://doi.org/10.1016/j.scib.2024.10.001

[55] Hodgkin AL, Huxley AF. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol, 117(4), 500-44. https://doi.org/10.1113/jphysiol.1952.sp004764

[56] David S, Bruce G, Andrew G, editor. Principles of computational modelling in neuroscience. 1st ed. New York: Cambridge University Press; 2011.

[57] Hines ML, Carnevale NT. (1997). The NEURON simulation environment. Neural Comput, 9(6), 1179-209. https://doi.org/10.1162/neco.1997.9.6.1179

[58] Anastassiou CA, Montgomery SM, Barahona M, Buzsáki G, Koch C. (2010). The effect of spatially inhomogeneous extracellular electric fields on neurons. J Neurosci, 30(5), 1925-1936. https://doi.org/10.1523/JNEUROSCI.3635-09.2010

[59] Toloza EHS, Negahbani E, Fröhlich F. (2018). Ih interacts with somato-dendritic structure to determine frequency response to weak alternating electric field stimulation. J Neurophysiol, 119(3), 1029-1036. https://doi.org/10.1152/jn.00541.2017

[60] Tran H, Shirinpour S, Opitz A. (2022). Effects of transcranial alternating current stimulation on spiking activity in computational models of single neocortical neurons. Neuroimage, 250, 118953. https://doi.org/10.1016/j.neuroimage.2022.118953

[61] Aberra AS, Wang R, Grill WM, Peterchev AV. (2023). Multi-scale model of axonal and dendritic polarization by transcranial direct current stimulation in realistic head geometry. Brain Stimul, 16(6), 1776-1791. https://doi.org/10.1016/j.brs.2023.11.018

[62] Bikson M, Dmochowski J, Rahman A. (2013). The "quasi-uniform" assumption in animal and computational models of non-invasive electrical stimulation. Brain Stimul, 6(4), 704-705. https://doi.org/10.1016/j.brs.2012.11.005

[63] Jackson MP, Rahman A, Lafon B, Kronberg G, Ling D, Parra LC, et al. (2016). Animal models of transcranial direct current stimulation: Methods and mechanisms. Clin Neurophysiol, 127(11), 3425-3454. https://doi.org/10.1016/j.clinph.2016.08.016

[64] Radman T, Ramos RL, Brumberg JC, Bikson M. (2009). Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro. Brain Stimul, 2(4), 215-228.e3. https://doi.org/10.1016/j.brs.2009.03.007

[65] Bikson M, Inoue M, Akiyama H, Deans JK, Fox JE, Miyakawa H, et al. (2004). Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. J Physiol, 557(Pt 1), 175-190. https://doi.org/10.1113/jphysiol.2003.055772

[66] Aspart F, Remme MWH, Obermayer K. (2018). Differential polarization of cortical pyramidal neuron dendrites through weak extracellular fields. PLoS Comput Biol, 14(5), e1006124. https://doi.org/10.1371/journal.pcbi.1006124

[67] Huang X, Wang J, Yi G. (2024). Frequency-domain analysis of membrane polarization in two-compartment model neurons with weak alternating electric fields. Cogn Neurodyn, 18(3), 1245-1264. https://doi.org/10.1007/s11571-023-09980-w

[68] Huang X, Wei X, Wang J, Yi G. (2024). Frequency-dependent membrane polarization across neocortical cell types and subcellular elements by transcranial alternating current stimulation. J Neural Eng, 21(1), 016034. https://doi.org/10.1088/1741-2552/ad2b8a

[69] Gaugain G, Al Harrach M, Yochum M, Wendling F, Bikson M, Modolo J, et al. (2025). Frequency-dependent phase entrainment of cortical cell types during tACS: computational modeling evidence. J Neural Eng, 22(1), 016028. https://doi.org/10.1088/1741-2552/ad9526

[70] Aspart F, Ladenbauer J, Obermayer K. (2016). Extending integrate-and-fire model neurons to account for the effects of weak electric fields and input filtering mediated by the dendrite. PLoS Comput Biol, 12(11), e1005206. https://doi.org/10.1371/journal.pcbi.1005206

[71] Ladenbauer J, Obermayer K. (2019). Weak electric fields promote resonance in neuronal spiking activity: Analytical results from two-compartment cell and network models. PLoS Comput Biol, 15(4), e1006974. https://doi.org/10.1371/journal.pcbi.1006974

[72] Brette R. (2015). What is the most realistic single-compartment model of spike initiation?. PLoS Comput Biol, 11(4), e1004114. https://doi.org/10.1371/journal.pcbi.1004114

[73] Huang X, Wei X, Wang J, Yi G. (2025). Effects of transcranial alternating current stimulation on spike train correlation in two-compartment model neurons. Biol Cybern, 119(4-6), 26. https://doi.org/10.1007/s00422-025-01025-1

[74] Yi GS, Wang J, Wei XL, Tsang KM, Chan WL, Deng B, et al. (2014). Exploring how extracellular electric field modulates neuron activity through dynamical analysis of a two-compartment neuron model. J Comput Neurosci, 36(3), 383-399. https://doi.org/10.1007/s10827-013-0479-z

[75] Zhao Z, Shirinpour S, Tran H, Wischnewski M, Opitz A. (2024). Intensity- and frequency-specific effects of transcranial alternating current stimulation are explained by network dynamics. J Neural Eng, 21(2), 026024. https://doi.org/10.1088/1741-2552/ad37d9

[76] Markram H, Muller E, Ramaswamy S, Reimann MW, Abdellah M, Sanchez CA, et al. (2015). Reconstruction and simulation of neocortical microcircuitry. Cell, 163, 456-92. https://doi.org/10.1016/j.cell.2015.09.029

[77] Huang X, Wei X, Wang J, Yi G. (2025). Multi-scale model of neural entrainment by transcranial alternating current stimulation in realistic cortical anatomy. J Comput Neurosci. https://doi.org/10.1007/s10827-025-00912-7

[78] Aberra AS, Wang B, Grill WM, Peterchev AV. (2020). Simulation of transcranial magnetic stimulation in head model with morphologically-realistic cortical neurons. Brain Stimul, 13(1), 175-189. https://doi.org/10.1016/j.brs.2019.10.002

[79] Dura-Bernal S, Griffith EY, Barczak A, O'Connell MN, McGinnis T, Moreira JVS, et al. (2023). Data-driven multiscale model of macaque auditory thalamocortical circuits reproduces in vivo dynamics. Cell Rep, 42(11), 113378. https://doi.org/10.1016/j.celrep.2023.113378

[80] Yokota T, Maki T, Nagata T, Murakami T, Ugawa Y, Laakso I, et al. (2019). Real-time estimation of electric fields induced by transcranial magnetic stimulation with deep neural networks. Brain Stimul, 12(6), 1500-1507. https://doi.org/10.1016/j.brs.2019.06.015

[81] Li H, Deng ZD, Oathes D, Fan Y. (2022). Computation of transcranial magnetic stimulation electric fields using self-supervised deep learning. Neuroimage, 264, 119705. https://doi.org/10.1016/j.neuroimage.2022.119705

[82] Aberra AS, Lopez A, Grill WM, Peterchev AV. (2023). Rapid estimation of cortical neuron activation thresholds by transcranial magnetic stimulation using convolutional neural networks. Neuroimage, 275, 120184. https://doi.org/10.1016/j.neuroimage.2023.120184

[83] Beniaguev D, Segev I, London M. (2021). Single cortical neurons as deep artificial neural networks. Neuron, 109(17), 2727-2739.e3. https://doi.org/10.1016/j.neuron.2021.07.002

[84] Yamins DL, DiCarlo JJ. (2016). Using goal-driven deep learning models to understand sensory cortex. Nat Neurosci, 19(3), 356-65. https://doi.org/10.1038/nn.4244

Type

Review Article

Published

2025-11-11

Data Availability Statement

All data needed to evaluate the conclusions in the paper are present in the paper or the Supplementary Materials. Additional data related to this paper may be requested from the authors.

Issue

Section

Bioinformatics

How to Cite

Yi, G., Hou, X., Huang, X., Zhang, F., Chen, J., & Li, S. (2025). Multiscale Modeling of Transcranial Alternating Current Stimulation:Induced Electric Field and Cellular Responses. Brain Conflux, 1(3), e287. https://doi.org/10.71321/wyq6hf65

Similar Articles

You may also start an advanced similarity search for this article.