Inflammatory Responses of High Mobility Group Protein B1 in Disease: Current Trends, novel Insights, and challenges
DOI:
https://doi.org/10.71321/4an4s550Keywords:
HMGB1, disease, inflammatory responsesAbstract
HMGB1, a key member of the HMG protein family, stabilizes nucleosomes and mediates infection, injury, and late inflammatory responses. Its related research is crucial in critical care medicine, cancer, and neurological diseases, yet current reports inadequately present its status. This review makes a comprehensive bibliometric analysis of the past hmgb1 research, and makes a graphical analysis of the trends and hotspots of HMGB1-related research. From 1976 to 2024, a total of 5992 articles were included, and the number of published papers and citations showed an increasing trend. China and the United States are leading contributors in this field, with the University of Pittsburgh being the most prominent research institution. Among the authors, Billiar, Timothy R. is the most prolific author, while Yang, H. ranks first in co-citation frequency. Inspection of the literature and keywords reveals that disease and its clinical diagnosis and treatment, cell death, mechanism, and molecular pattern are popular research topics. About disease frontiers, critical care medicine (sepsis, endotoxemia, severe viral hemorrhagic fever, multiple organ failure) is the earliest identified and very popular direction of HMGB1, and neurological diseases-related research are at the forefront of the field. In summary, this study employs bibliometrics to identify, visualize, and discuss trends and hotspots in HMGB1 research. Through comprehensive analysis of extensive literature, the aim is to clarify the current research status of HMGB1-related diseases, understand major trends, find potential collaborators, and discover promising and innovative research directions.
References
[1] Goodwin, G. H., Sanders, C., & Johns, E. W. (1973). A new group of chromatin-associated proteins with a high content of acidic and basic amino acids [Journal Article]. Eur J Biochem, 38(1), 14-19. http://doi.org/10.1111/j.1432-1033.1973.tb03026.x
[2] Goodwin, G. H., & Johns, E. W. (1973). Isolation and characterisation of two calf-thymus chromatin non-histone proteins with high contents of acidic and basic amino acids [Journal Article]. Eur J Biochem, 40(1), 215-219. http://doi.org/10.1111/j.1432-1033.1973.tb03188.x
[3] Weir, H. M., Kraulis, P. J., Hill, C. S., Raine, A. R., Laue, E. D., & Thomas, J. O. (1993). Structure of the HMG box motif in the B-domain of HMG1 [Comparative Study; Journal Article; Research Support, Non-U.S. Gov't]. Embo Journal, 12(4), 1311-1319. http://doi.org/10.1002/j.1460-2075.1993.tb05776.x
[4] Balana, A. T., Mukherjee, A., Nagpal, H., Moon, S. P., Fierz, B., Vasquez, K. M., & Pratt, M. R. (2021). O-GlcNAcylation of High Mobility Group Box 1 (HMGB1) Alters Its DNA Binding and DNA Damage Processing Activities [Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't]. Journal of the American Chemical Society, 143(39), 16030-16040. http://doi.org/10.1021/jacs.1c06192
[5] Polyanichko A, W. H. (2010). Structural organization of DNA-protein complexes of chromatin studied by vibrational and electronic circular dichroism. Spectroscopy-an International Journal, 3-4(24), 239-244.
[6] Song, M. J., Hwang, S., Wong, W., Round, J., Martinez-Guzman, D., Turpaz, Y., Liang, J., Wong, B., Johnson, R. C., Carey, M., & Sun, R. (2004). The DNA architectural protein HMGB1 facilitates RTA-mediated viral gene expression in gamma-2 herpesviruses [Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, P.H.S.]. Journal of Virology, 78(23), 12940-12950. http://doi.org/10.1128/JVI.78.23.12940-12950.2004
[7] Ueda, T., Chou, H., Kawase, T., Shirakawa, H., & Yoshida, M. (2004). Acidic C-tail of HMGB1 is required for its target binding to nucleosome linker DNA and transcription stimulation [Journal Article; Research Support, Non-U.S. Gov't]. Biochemistry, 43(30), 9901-9908. http://doi.org/10.1021/bi035975l
[8] Wu, X. J., Chen, Y. Y., Guo, W. W., Li, T., Dong, H. B., Wang, W., Xie, M., Ma, G. L., & Pei, D. S. (2020). HMGB1 regulates SNAI1 during NSCLC metastasis, both directly, through transcriptional activation, and indirectly, in a RSF1-IT2-dependent manner [Journal Article; Research Support, Non-U.S. Gov't]. Molecular Oncology, 14(6), 1348-1364. http://doi.org/10.1002/1878-0261.12691
[9] Zhan, Z., Li, Q., Wu, P., Ye, Y., Tseng, H. Y., Zhang, L., & Zhang, X. D. (2012). Autophagy-mediated HMGB1 release antagonizes apoptosis of gastric cancer cells induced by vincristine via transcriptional regulation of Mcl-1 [Journal Article; Research Support, Non-U.S. Gov't]. Autophagy, 8(1), 109-121. http://doi.org/10.4161/auto.8.1.18319
[10] Chen, R., Kang, R., & Tang, D. (2022). The mechanism of HMGB1 secretion and release [Journal Article; Research Support, Non-U.S. Gov't; Review]. Experimental and Molecular Medicine, 54(2), 91-102. http://doi.org/10.1038/s12276-022-00736-w
[11] Kim, Y. H., Kwak, M. S., Park, J. B., Lee, S. A., Choi, J. E., Cho, H. S., & Shin, J. S. (2016). N-linked glycosylation plays a crucial role in the secretion of HMGB1 [Journal Article; Research Support, Non-U.S. Gov't]. Journal of Cell Science, 129(1), 29-38. http://doi.org/10.1242/jcs.176412
[12] Lu, B., Wang, H., Andersson, U., & Tracey, K. J. (2013). Regulation of HMGB1 release by inflammasomes [Journal Article; Review]. Protein & Cell, 4(3), 163-167. http://doi.org/10.1007/s13238-012-2118-2
[13] Andersson, U., Tracey, K. J., & Yang, H. (2021). Post-Translational Modification of HMGB1 Disulfide Bonds in Stimulating and Inhibiting Inflammation [Journal Article; Research Support, Non-U.S. Gov't; Review]. Cells, 10(12) http://doi.org/10.3390/cells10123323
[14] Watanabe, H., & Son, M. (2021). The Immune Tolerance Role of the HMGB1-RAGE Axis [Journal Article; Research Support, N.I.H., Extramural; Review]. Cells, 10(3) http://doi.org/10.3390/cells10030564
[15] Liu, X., Lu, B., Fu, J., Zhu, X., Song, E., & Song, Y. (2021). Amorphous silica nanoparticles induce inflammation via activation of NLRP3 inflammasome and HMGB1/TLR4/MYD88/NF-kb signaling pathway in HUVEC cells [Journal Article; Research Support, Non-U.S. Gov't]. Journal of Hazardous Materials, 404(Pt B), 124050. http://doi.org/10.1016/j.jhazmat.2020.124050
[16] Mohamed, M. E., Kandeel, M., Abd, E. H., El-Beltagi, H. S., & Younis, N. S. (2022). The Protective Effect of Anethole against Renal Ischemia/Reperfusion: The Role of the TLR2,4/MYD88/NFkappaB Pathway [Journal Article]. Antioxidants, 11(3) http://doi.org/10.3390/antiox11030535
[17] Denning, N. L., Aziz, M., Gurien, S. D., & Wang, P. (2019). DAMPs and NETs in Sepsis [Journal Article; Research Support, N.I.H., Extramural; Review]. Frontiers in Immunology, 10, 2536. http://doi.org/10.3389/fimmu.2019.02536
[18] Rani, M., Nicholson, S. E., Zhang, Q., & Schwacha, M. G. (2017). Damage-associated molecular patterns (DAMPs) released after burn are associated with inflammation and monocyte activation [Journal Article]. Burns, 43(2), 297-303. http://doi.org/10.1016/j.burns.2016.10.001
[19] Lee, S. A., Kwak, M. S., Kim, S., & Shin, J. S. (2014). The role of high mobility group box 1 in innate immunity [Journal Article; Research Support, Non-U.S. Gov't; Review]. Yonsei Medical Journal, 55(5), 1165-1176. http://doi.org/10.3349/ymj.2014.55.5.1165
[20] Xu, K., Ren, X., Ju, B., Aihaiti, Y., Cai, Y., Zhang, Y., He, L., & Wang, J. (2020). Clinical markers combined with HMGB1 polymorphisms to predict efficacy of conventional DMARDs in rheumatoid arthritis patients [Journal Article; Research Support, Non-U.S. Gov't]. Clinical Immunology, 221, 108592. http://doi.org/10.1016/j.clim.2020.108592
[21] Wu, R., Wang, N., Comish, P. B., Tang, D., & Kang, R. (2021). Inflammasome-Dependent Coagulation Activation in Sepsis [Journal Article; Review]. Frontiers in Immunology, 12, 641750. http://doi.org/10.3389/fimmu.2021.641750
[22] Foglio, E., Pellegrini, L., Russo, M. A., & Limana, F. (2022). HMGB1-Mediated Activation of the Inflammatory-Reparative Response Following Myocardial Infarction [Journal Article; Research Support, Non-U.S. Gov't; Review]. Cells, 11(2) http://doi.org/10.3390/cells11020216
[23] Meng, X., Su, W., Tao, X., Sun, M., Ying, R., Wei, W., & Wang, B. (2018). Oxidation Prevents HMGB1 Inhibition on PDGF-Induced Differentiation of Multipotent Vascular Stem Cells to Smooth Muscle Cells: A Possible Mechanism Linking Oxidative Stress to Atherosclerosis [Journal Article]. Biomed Research International, 2018, 4019814. http://doi.org/10.1155/2018/4019814
[24] Hemmer, S., Senger, S., Griessenauer, C. J., Simgen, A., Oertel, J., Geisel, J., & Hendrix, P. (2022). Admission serum high mobility group box 1 (HMGB1) protein predicts delayed cerebral ischemia following aneurysmal subarachnoid hemorrhage [Journal Article; Observational Study]. Neurosurgical Review, 45(1), 807-817. http://doi.org/10.1007/s10143-021-01607-0
[25] Yang, L., Zhou, L., Wang, X., Wang, W., & Wang, J. (2020). Inhibition of HMGB1 involved in the protective of salidroside on liver injury in diabetes mice [Journal Article]. International Immunopharmacology, 89(Pt A), 106987. http://doi.org/10.1016/j.intimp.2020.106987
[26] Tanaka, A., Ito, T., Kibata, K., Inagaki-Katashiba, N., Amuro, H., Nishizawa, T., Son, Y., Ozaki, Y., & Nomura, S. (2019). Serum high-mobility group box 1 is correlated with interferon-alpha and may predict disease activity in patients with systemic lupus erythematosus [Journal Article]. Lupus, 28(9), 1120-1127. http://doi.org/10.1177/0961203319862865
[27] Ho, W. I., Hu, Y., Cheng, C. W., Wei, R., Yang, J., Li, N., Au, K. W., Tse, Y. L., Wang, Q., Ng, K. M., Esteban, M. A., & Tse, H. F. (2022). Liposome-encapsulated curcumin attenuates HMGB1-mediated hepatic inflammation and fibrosis in a murine model of Wilson's disease [Journal Article]. Biomedicine & Pharmacotherapy, 152, 113197. http://doi.org/10.1016/j.biopha.2022.113197
[28] Sui, H., Luo, M., Miao, Y., Cheng, W., Wen, S., Zhao, B., Li, Y., Qiao, Z., Liu, Y., & Xu, C. (2020). Cystic fibrosis transmembrane conductance regulator ameliorates lipopolysaccharide-induced acute lung injury by inhibiting autophagy through PI3K/AKT/mTOR pathway in mice [Journal Article; Research Support, Non-U.S. Gov't]. Respiratory Physiology & Neurobiology, 273, 103338. http://doi.org/10.1016/j.resp.2019.103338
[29] Jankauskaite, L., Malinauskas, M., & Mickeviciute, G. C. (2022). HMGB1: A Potential Target of Nervus Vagus Stimulation in Pediatric SARS-CoV-2-Induced ALI/ARDS [Journal Article]. Frontiers in Pediatrics, 10, 884539. http://doi.org/10.3389/fped.2022.884539
[30] Teo, H. S. A., Schlichtner, S., Yasinska, I. M., Sakhnevych, S. S., Fiedler, W., Wellbrock, J., Berger, S. M., Klenova, E., Gibbs, B. F., Fasler-Kan, E., & Sumbayev, V. V. (2021). High Mobility Group Box 1 (HMGB1) Induces Toll-Like Receptor 4-Mediated Production of the Immunosuppressive Protein Galectin-9 in Human Cancer Cells [Journal Article; Research Support, Non-U.S. Gov't]. Frontiers in Immunology, 12, 675731. http://doi.org/10.3389/fimmu.2021.675731
[31] Simon, D. W., Aneja, R. K., Alexander, H., Bell, M. J., Bayir, H., Kochanek, P. M., & Clark, R. (2018). Minocycline Attenuates High Mobility Group Box 1 Translocation, Microglial Activation, and Thalamic Neurodegeneration after Traumatic Brain Injury in Post-Natal Day 17 Rats [Journal Article; Research Support, N.I.H., Extramural]. Journal of Neurotrauma, 35(1), 130-138. http://doi.org/10.1089/neu.2017.5093
[32] Hicks, D., Wouters, P., Waltman, L., de Rijcke, S., & Rafols, I. (2015). Bibliometrics: The Leiden Manifesto for research metrics [Historical Article; Journal Article]. Nature, 520(7548), 429-431. http://doi.org/10.1038/520429a
[33] Deng, P., Shi, H., Pan, X., Liang, H., Wang, S., Wu, J., Zhang, W., Huang, F., Sun, X., Zhu, H., & Chen, Z. (2022). Worldwide Research Trends on Diabetic Foot Ulcers (2004-2020): Suggestions for Researchers [Journal Article]. Journal of Diabetes Research, 2022, 7991031. http://doi.org/10.1155/2022/7991031
[34] Ninkov, A., Frank, J. R., & Maggio, L. A. (2022). Bibliometrics: Methods for studying academic publishing [Journal Article]. Perspectives On Medical Education, 11(3), 173-176. http://doi.org/10.1007/s40037-021-00695-4
[35] Shi, X., Wang, S., Wu, Y., Li, Q., Zhang, T., Min, K., Feng, D., Liu, M., Wei, J., Zhu, L., Mo, W., Xiao, Z., Yang, H., Chen, Y., & Lv, X. (2022). A Bibliometric Analysis of the Innate Immune DNA Sensing cGAS-STING Pathway from 2013 to 2021 [Journal Article; Research Support, Non-U.S. Gov't]. Frontiers in Immunology, 13, 916383. http://doi.org/10.3389/fimmu.2022.916383
[36] Ma, D., Yang, B., Guan, B., Song, L., Liu, Q., Fan, Y., Zhao, L., Wang, T., Zhang, Z., Gao, Z., Li, S., & Xu, H. (2021). A Bibliometric Analysis of Pyroptosis From 2001 to 2021 [Journal Article; Research Support, Non-U.S. Gov't]. Frontiers in Immunology, 12, 731933. http://doi.org/10.3389/fimmu.2021.731933
[37] Dong, X., Tan, Y., Zhuang, D., Hu, T., & Zhao, M. (2022). Global Characteristics and Trends in Research on Ferroptosis: A Data-Driven Bibliometric Study [Journal Article; Review]. Oxidative Medicine and Cellular Longevity, 2022, 8661864. http://doi.org/10.1155/2022/8661864
[38] Chen, C. (2006). CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology, 57(3), 359-377. http://doi.org/10.1002/asi.20317
[39] van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping [Journal Article]. Scientometrics, 84(2), 523-538. http://doi.org/10.1007/s11192-009-0146-3
[40] Aria, M., & Cuccurullo, C. (2018). bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis. Journal of Informetrics, 11(4), 959-975.
[41] Scaffidi, P., Misteli, T., & Bianchi, M. E. (2002). Release of chromatin protein HMGB1 by necrotic cells triggers inflammation [Journal Article; Research Support, Non-U.S. Gov't]. Nature, 418(6894), 191-195. http://doi.org/10.1038/nature00858
[42] Park, J. S., Svetkauskaite, D., He, Q., Kim, J. Y., Strassheim, D., Ishizaka, A., & Abraham, E. (2004). Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein [Journal Article; Research Support, U.S. Gov't, P.H.S.]. Journal of Biological Chemistry, 279(9), 7370-7377. http://doi.org/10.1074/jbc.M306793200
[43] Kang, R., Chen, R., Zhang, Q., Hou, W., Wu, S., Cao, L., Huang, J., Yu, Y., Fan, X. G., Yan, Z., Sun, X., Wang, H., Wang, Q., Tsung, A., Billiar, T. R., Zeh, H. R., Lotze, M. T., & Tang, D. (2014). HMGB1 in health and disease [Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't; Review]. Molecular Aspects of Medicine, 40, 1-116. http://doi.org/10.1016/j.mam.2014.05.001
[44] Chen, R., Kang, R., & Tang, D. (2022). The mechanism of HMGB1 secretion and release [Journal Article; Research Support, Non-U.S. Gov't; Review]. Experimental and Molecular Medicine, 54(2), 91-102. http://doi.org/10.1038/s12276-022-00736-w
[45] Lee, S. Y., Ju, M. K., Jeon, H. M., Jeong, E. K., Lee, Y. J., Kim, C. H., Park, H. G., Han, S. I., & Kang, H. S. (2018). Regulation of Tumor Progression by Programmed Necrosis [Journal Article; Review]. Oxidative Medicine and Cellular Longevity, 2018, 3537471. http://doi.org/10.1155/2018/3537471
[46] Stelmasiak, M., Mikaszewska-Sokolewicz, M., NiewiNski, G., BaLan, B. J., & SLotwiNski, R. (2020). The soluble tumor necrosis factor receptor 1 as a potential early diagnostic and prognostic markers in intensive care unit patients with severe infections [Journal Article]. Central European Journal of Immunology, 45(2), 160-169. http://doi.org/10.5114/ceji.2020.97903
[47] Tang, D., Kang, R., Livesey, K. M., Cheh, C. W., Farkas, A., Loughran, P., Hoppe, G., Bianchi, M. E., Tracey, K. J., Zeh, H. R., & Lotze, M. T. (2010). Endogenous HMGB1 regulates autophagy [Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't]. Journal of Cell Biology, 190(5), 881-892. http://doi.org/10.1083/jcb.200911078
[48] Tang, D., Kang, R., Livesey, K. M., Kroemer, G., Billiar, T. R., Van Houten, B., Zeh, H. R., & Lotze, M. T. (2011). High-mobility group box 1 is essential for mitochondrial quality control [Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't]. Cell Metabolism, 13(6), 701-711. http://doi.org/10.1016/j.cmet.2011.04.008
[49] Kang, R., Zhang, Q., Zeh, H. R., Lotze, M. T., & Tang, D. (2013). HMGB1 in cancer: good, bad, or both? [Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't; Review]. Clinical Cancer Research, 19(15), 4046-4057. http://doi.org/10.1158/1078-0432.CCR-13-0495
[50] Livesey, K. M., Kang, R., Vernon, P., Buchser, W., Loughran, P., Watkins, S. C., Zhang, L., Manfredi, J. J., Zeh, H. R., Li, L., Lotze, M. T., & Tang, D. (2012). p53/HMGB1 complexes regulate autophagy and apoptosis [Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't]. Cancer Research, 72(8), 1996-2005. http://doi.org/10.1158/0008-5472.CAN-11-2291
[51] Kang, R., Chen, R., Zhang, Q., Hou, W., Wu, S., Cao, L., Huang, J., Yu, Y., Fan, X. G., Yan, Z., Sun, X., Wang, H., Wang, Q., Tsung, A., Billiar, T. R., Zeh, H. R., Lotze, M. T., & Tang, D. (2014). HMGB1 in health and disease [Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't; Review]. Molecular Aspects of Medicine, 40, 1-116. http://doi.org/10.1016/j.mam.2014.05.001
[52] Huang, J., Ni, J., Liu, K., Yu, Y., Xie, M., Kang, R., Vernon, P., Cao, L., & Tang, D. (2012). HMGB1 promotes drug resistance in osteosarcoma [Journal Article; Research Support, Non-U.S. Gov't]. Cancer Research, 72(1), 230-238. http://doi.org/10.1158/0008-5472.CAN-11-2001
[53] Liu, L., Yang, M., Kang, R., Wang, Z., Zhao, Y., Yu, Y., Xie, M., Yin, X., Livesey, K. M., Lotze, M. T., Tang, D., & Cao, L. (2011). HMGB1-induced autophagy promotes chemotherapy resistance in leukemia cells [Journal Article; Research Support, Non-U.S. Gov't]. Leukemia, 25(1), 23-31. http://doi.org/10.1038/leu.2010.225
[54] Luo, Y., Yoneda, J., Ohmori, H., Sasaki, T., Shimbo, K., Eto, S., Kato, Y., Miyano, H., Kobayashi, T., Sasahira, T., Chihara, Y., & Kuniyasu, H. (2014). Cancer usurps skeletal muscle as an energy repository [Journal Article; Research Support, Non-U.S. Gov't]. Cancer Research, 74(1), 330-340. http://doi.org/10.1158/0008-5472.CAN-13-1052
[55] Kang, R., Zeh, H. J., Lotze, M. T., & Tang, D. (2011). The Beclin 1 network regulates autophagy and apoptosis [Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't; Review]. Cell Death and Differentiation, 18(4), 571-580. http://doi.org/10.1038/cdd.2010.191
[56] Liu, B., Gan, X., Zhao, Y., Gao, J., & Yu, H. (2021). Inhibition of HMGB1 reduced high glucose-induced BMSCs apoptosis via activation of AMPK and regulation of mitochondrial functions [Journal Article]. Journal of Physiology and Biochemistry, 77(2), 227-235. http://doi.org/10.1007/s13105-021-00784-2
[57] Brezniceanu, M. L., Volp, K., Bosser, S., Solbach, C., Lichter, P., Joos, S., & Zornig, M. (2003). HMGB1 inhibits cell death in yeast and mammalian cells and is abundantly expressed in human breast carcinoma [Journal Article]. Faseb Journal, 17(10), 1295-1297. http://doi.org/10.1096/fj.02-0621fje
[58] Jiang, H., Hu, X., Zhang, H., & Li, W. (2017). Down-regulation of LncRNA TUG1 enhances radiosensitivity in bladder cancer via suppressing HMGB1 expression [Journal Article]. Radiation Oncology, 12(1), 65. http://doi.org/10.1186/s13014-017-0802-3
[59] Zhi, S. M., Fang, G. X., Xie, X. M., Liu, L. H., Yan, J., Liu, D. B., & Yu, H. Y. (2020). Melatonin reduces OGD/R-induced neuron injury by regulating redox/inflammation/apoptosis signaling [Journal Article; Research Support, Non-U.S. Gov't]. European Review for Medical and Pharmacological Sciences, 24(3), 1524-1536. http://doi.org/10.26355/eurrev_202002_20211
[60] Huo, J., Shen, Y., Zhang, Y., & Shen, L. (2022). BI 2536 induces gasdermin E-dependent pyroptosis in ovarian cancer [Journal Article]. Frontiers in Oncology, 12, 963928. http://doi.org/10.3389/fonc.2022.963928
[61] Zeng, C. Y., Li, C. G., Shu, J. X., Xu, L. H., Ouyang, D. Y., Mai, F. Y., Zeng, Q. Z., Zhang, C. C., Li, R. M., & He, X. H. (2019). ATP induces caspase-3/gasdermin E-mediated pyroptosis in NLRP3 pathway-blocked murine macrophages [Journal Article; Research Support, Non-U.S. Gov't]. Apoptosis, 24(9-10), 703-717. http://doi.org/10.1007/s10495-019-01551-x
[62] Kamo N, K. B. G. A. (2013). ASC/Caspase-1/IL-1 beta Signaling Triggers Inflammatory Responses by Promoting HMGB1 Induction in Liver Ischemia/Reperfusion Injury. Hepatology, 1(58), 351-362.
[63] Li, Y., Yuan, Y., Huang, Z. X., Chen, H., Lan, R., Wang, Z., Lai, K., Chen, H., Chen, Z., Zou, Z., Ma, H. B., Lan, H. Y., Mak, T. W., & Xu, Y. (2021). GSDME-mediated pyroptosis promotes inflammation and fibrosis in obstructive nephropathy [Journal Article; Research Support, Non-U.S. Gov't]. Cell Death and Differentiation, 28(8), 2333-2350. http://doi.org/10.1038/s41418-021-00755-6
[64] Chen, X., Yu, C., Kang, R., Kroemer, G., & Tang, D. (2021). Cellular degradation systems in ferroptosis [Journal Article; Research Support, Non-U.S. Gov't; Review]. Cell Death and Differentiation, 28(4), 1135-1148. http://doi.org/10.1038/s41418-020-00728-1
[65] Lin, C., Hu, R., Sun, F., & Liang, W. (2022). Ferroptosis-based molecular prognostic model for adrenocortical carcinoma based on least absolute shrinkage and selection operator regression [Journal Article]. Journal of Clinical Laboratory Analysis, 36(6), e24465. http://doi.org/10.1002/jcla.24465
[66] Hu, N., Bai, L., Dai, E., Han, L., Kang, R., Li, H., & Tang, D. (2021). Pirin is a nuclear redox-sensitive modulator of autophagy-dependent ferroptosis [Journal Article]. Biochemical and Biophysical Research Communications, 536, 100-106. http://doi.org/10.1016/j.bbrc.2020.12.066
[67] Wen, Q., Liu, J., Kang, R., Zhou, B., & Tang, D. (2019). The release and activity of HMGB1 in ferroptosis [Journal Article; Research Support, Non-U.S. Gov't]. Biochemical and Biophysical Research Communications, 510(2), 278-283. http://doi.org/10.1016/j.bbrc.2019.01.090
[68] He, C., Sun, S., Zhang, Y., Xie, F., & Li, S. (2021). The role of irreversible electroporation in promoting M1 macrophage polarization via regulating the HMGB1-RAGE-MAPK axis in pancreatic cancer [Journal Article; Research Support, Non-U.S. Gov't]. OncoImmunology, 10(1), 1897295. http://doi.org/10.1080/2162402X.2021.1897295
[69] Cebrian, M. J., Bauden, M., Andersson, R., Holdenrieder, S., & Ansari, D. (2016). Paradoxical Role of HMGB1 in Pancreatic Cancer: Tumor Suppressor or Tumor Promoter? [Journal Article; Review]. Anticancer Research, 36(9), 4381-4389. http://doi.org/10.21873/anticanres.10981
[70] Dong, H., Zhang, L., & Liu, S. (2022). Targeting HMGB1: An available Therapeutic Strategy for Breast Cancer Therapy [Journal Article; Research Support, Non-U.S. Gov't; Review]. International Journal of Biological Sciences, 18(8), 3421-3434. http://doi.org/10.7150/ijbs.73504
[71] Wang, H., Zhang, S., Zhao, H., Qin, H., Zhang, J., Dong, J., Zhang, H., Liu, X., Zhao, Z., Zhao, Y., Shao, M., Wu, F., & Zhang, W. (2020). Carbon Monoxide Inhibits the Expression of Proteins Associated with Intestinal Mucosal Pyroptosis in a Rat Model of Sepsis Induced by Cecal Ligation and Puncture [Journal Article]. Medical Science Monitor, 26, e920668. http://doi.org/10.12659/MSM.920668
[72] Chen, G., Hou, Y., Li, X., Pan, R., & Zhao, D. (2021). Sepsis-induced acute lung injury in young rats is relieved by calycosin through inactivating the HMGB1/MyD88/NF-kappaB pathway and NLRP3 inflammasome [Journal Article]. International Immunopharmacology, 96, 107623. http://doi.org/10.1016/j.intimp.2021.107623
[73] Li, Y., Zhu, H., Pan, L., Zhang, B., & Che, H. (2021). microRNA-103a-3p confers protection against lipopolysaccharide-induced sepsis and consequent multiple organ dysfunction syndrome by targeting HMGB1 [Journal Article]. Infection Genetics and Evolution, 89, 104681. http://doi.org/10.1016/j.meegid.2020.104681
[74] Kruger, B., Krick, S., Dhillon, N., Lerner, S. M., Ames, S., Bromberg, J. S., Lin, M., Walsh, L., Vella, J., Fischereder, M., Kramer, B. K., Colvin, R. B., Heeger, P. S., Murphy, B. T., & Schroppel, B. (2009). Donor Toll-like receptor 4 contributes to ischemia and reperfusion injury following human kidney transplantation [Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't]. Proceedings of the National Academy of Sciences of the United States of America, 106(9), 3390-3395. http://doi.org/10.1073/pnas.0810169106
[75] Panisello-Rosello, A., Verde, E., Lopez, A., Flores, M., Folch-Puy, E., Rolo, A., Palmeira, C., Hotter, G., Carbonell, T., Adam, R., & Rosello-Catafau, J. (2018). Cytoprotective Mechanisms in Fatty Liver Preservation against Cold Ischemia Injury: A Comparison between IGL-1 and HTK [Journal Article]. International Journal of Molecular Sciences, 19(2) http://doi.org/10.3390/ijms19020348
[76] Manti, S., Harford, T. J., Salpietro, C., Rezaee, F., & Piedimonte, G. (2018). Induction of high-mobility group Box-1 in vitro and in vivo by respiratory syncytial virus [Journal Article; Research Support, N.I.H., Extramural]. Pediatric Research, 83(5), 1049-1056. http://doi.org/10.1038/pr.2018.6
[77] Wyganowska-Swiatkowska, M., Nohawica, M., Grocholewicz, K., & Nowak, G. (2020). Influence of Herbal Medicines on HMGB1 Release, SARS-CoV-2 Viral Attachment, Acute Respiratory Failure, and Sepsis. A Literature Review [Journal Article; Review]. International Journal of Molecular Sciences, 21(13) http://doi.org/10.3390/ijms21134639
[78] Ogura, Y., Fukuchi, K., Morimoto, H., Yuki, T., Otsuka, M., Shimauchi, T., Honda, T., & Tokura, Y. (2022). Elevation of circulating neutrophil extracellular traps, interleukin (IL)-8, IL-22, and vascular endothelial growth factor in patients with venomous snake mamushi (Gloydius blomhoffii) bites [Journal Article]. Journal of Dermatology, 49(1), 124-132. http://doi.org/10.1111/1346-8138.16181
[79] Wahid, A., Chen, W., Wang, X., & Tang, X. (2021). High-mobility group box 1 serves as an inflammation driver of cardiovascular disease [Journal Article; Review]. Biomedicine & Pharmacotherapy, 139, 111555. http://doi.org/10.1016/j.biopha.2021.111555
[80] Kalinina, N., Agrotis, A., Antropova, Y., DiVitto, G., Kanellakis, P., Kostolias, G., Ilyinskaya, O., Tararak, E., & Bobik, A. (2004). Increased expression of the DNA-binding cytokine HMGB1 in human atherosclerotic lesions: role of activated macrophages and cytokines [Journal Article]. Arteriosclerosis Thrombosis and Vascular Biology, 24(12), 2320-2325. http://doi.org/10.1161/01.ATV.0000145573.36113.8a
[81] Liu, M., Yu, Y., Jiang, H., Zhang, L., Zhang, P. P., Yu, P., Jia, J. G., Chen, R. Z., Zou, Y. Z., & Ge, J. B. (2013). Simvastatin suppresses vascular inflammation and atherosclerosis in ApoE(-/-) mice by downregulating the HMGB1-RAGE axis [Journal Article; Research Support, Non-U.S. Gov't]. Acta Pharmacologica Sinica, 34(6), 830-836. http://doi.org/10.1038/aps.2013.8
[82] Feng, Y., Ke, J., Cao, P., Deng, M., Li, J., Cai, H., Meng, Q., Li, Y., & Long, X. (2018). HMGB1-induced angiogenesis in perforated disc cells of human temporomandibular joint [Journal Article; Research Support, Non-U.S. Gov't]. Journal of Cellular and Molecular Medicine, 22(2), 1283-1291. http://doi.org/10.1111/jcmm.13410
[83] van Beijnum, J. R., Nowak-Sliwinska, P., van den Boezem, E., Hautvast, P., Buurman, W. A., & Griffioen, A. W. (2013). Tumor angiogenesis is enforced by autocrine regulation of high-mobility group box 1 [Journal Article; Research Support, Non-U.S. Gov't]. Oncogene, 32(3), 363-374. http://doi.org/10.1038/onc.2012.49
[84] Rapoport, B. L., Steel, H. C., Theron, A. J., Heyman, L., Smit, T., Ramdas, Y., & Anderson, R. (2020). High Mobility Group Box 1 in Human Cancer [Journal Article; Review]. Cells, 9(7) http://doi.org/10.3390/cells9071664
[85] Wang, J. D., Wang, Y. Y., Lin, S. Y., Chang, C. Y., Li, J. R., Huang, S. W., Chen, W. Y., Liao, S. L., & Chen, C. J. (2021). Exosomal HMGB1 Promoted Cancer Malignancy [Journal Article]. Cancers, 13(4) http://doi.org/10.3390/cancers13040877
[86] He, S. J., Cheng, J., Feng, X., Yu, Y., Tian, L., & Huang, Q. (2017). The dual role and therapeutic potential of high-mobility group box 1 in cancer [Journal Article; Review]. Oncotarget, 8(38), 64534-64550. http://doi.org/10.18632/oncotarget.17885
[87] Xu, T., Jiang, L., & Wang, Z. (2019). The progression of HMGB1-induced autophagy in cancer biology [Journal Article; Review]. OncoTargets and Therapy, 12, 365-377. http://doi.org/10.2147/OTT.S185876
[88] Xu, T., Jiang, L., & Wang, Z. (2019). The progression of HMGB1-induced autophagy in cancer biology [Journal Article; Review]. OncoTargets and Therapy, 12, 365-377. http://doi.org/10.2147/OTT.S185876
[89] Goldstein, R. S., Bruchfeld, A., Yang, L., Qureshi, A. R., Gallowitsch-Puerta, M., Patel, N. B., Huston, B. J., Chavan, S., Rosas-Ballina, M., Gregersen, P. K., Czura, C. J., Sloan, R. P., Sama, A. E., & Tracey, K. J. (2007). Cholinergic anti-inflammatory pathway activity and High Mobility Group Box-1 (HMGB1) serum levels in patients with rheumatoid arthritis [Comparative Study; Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't]. Molecular Medicine, 13(3-4), 210-215. http://doi.org/10.2119/2006-00108.Goldstein
[90] Kaur, I., Behl, T., Bungau, S., Kumar, A., Mehta, V., Setia, D., Uddin, M. S., Zengin, G., Aleya, L., & Arora, S. (2020). Exploring the therapeutic promise of targeting HMGB1 in rheumatoid arthritis [Journal Article; Review]. Life Sciences, 258, 118164. http://doi.org/10.1016/j.lfs.2020.118164
[91] Garcia-Arnandis, I., Guillen, M. I., Gomar, F., Pelletier, J. P., Martel-Pelletier, J., & Alcaraz, M. J. (2010). High mobility group box 1 potentiates the pro-inflammatory effects of interleukin-1beta in osteoarthritic synoviocytes [Journal Article; Research Support, Non-U.S. Gov't]. Arthritis Research & Therapy, 12(4), R165. http://doi.org/10.1186/ar3124
[92] Qin, Y., Chen, Y., Wang, W., Wang, Z., Tang, G., Zhang, P., He, Z., Liu, Y., Dai, S. M., & Shen, Q. (2014). HMGB1-LPS complex promotes transformation of osteoarthritis synovial fibroblasts to a rheumatoid arthritis synovial fibroblast-like phenotype [Journal Article; Research Support, Non-U.S. Gov't]. Cell Death & Disease, 5(2), e1077. http://doi.org/10.1038/cddis.2014.48
[93] Li, R., Jia, F., Ren, K., Luo, M., Min, X., Xiao, S., & Xia, Y. (2021). Fibroblast growth factor inducible 14 signaling facilitates anti-dsDNA IgG penetration into mesangial cells [Journal Article; Research Support, Non-U.S. Gov't]. Journal of Cellular Physiology, 236(1), 249-259. http://doi.org/10.1002/jcp.29838
[94] Kuwano, A., Kohjima, M., Suzuki, H., Yamasaki, A., Ohashi, T., Imoto, K., Kurokawa, M., Morita, Y., Kato, M., & Ogawa, Y. (2019). Recombinant human soluble thrombomodulin ameliorates acetaminophen-induced liver toxicity in mice [Journal Article]. Experimental and Therapeutic Medicine, 18(2), 1323-1330. http://doi.org/10.3892/etm.2019.7665
[95] Regan, J. K., Kannan, P. S., Kemp, M. W., Kramer, B. W., Newnham, J. P., Jobe, A. H., & Kallapur, S. G. (2016). Damage-Associated Molecular Pattern and Fetal Membrane Vascular Injury and Collagen Disorganization in Lipopolysaccharide-Induced Intra-amniotic Inflammation in Fetal Sheep [Journal Article; Research Support, N.I.H., Extramural]. Reproductive Sciences, 23(1), 69-80. http://doi.org/10.1177/1933719115594014
[96] Chen, Y., Qiao, F., Zhao, Y., Wang, Y., & Liu, G. (2015). HMGB1 is activated in type 2 diabetes mellitus patients and in mesangial cells in response to high glucose [Journal Article; Research Support, Non-U.S. Gov't]. International Journal of Clinical and Experimental Pathology, 8(6), 6683-6691.
[97] Wang, X., Feng, C., Qiao, Y., & Zhao, X. (2018). Sigma 1 receptor mediated HMGB1 expression in spinal cord is involved in the development of diabetic neuropathic pain [Journal Article; Research Support, Non-U.S. Gov't]. Neuroscience Letters, 668, 164-168. http://doi.org/10.1016/j.neulet.2018.02.002
[98] Gao, T. L., Yuan, X. T., Yang, D., Dai, H. L., Wang, W. J., Peng, X., Shao, H. J., Jin, Z. F., & Fu, Z. J. (2012). Expression of HMGB1 and RAGE in rat and human brains after traumatic brain injury [Comparative Study; Journal Article; Research Support, Non-U.S. Gov't]. Journal of Trauma and Acute Care Surgery, 72(3), 643-649. http://doi.org/10.1097/TA.0b013e31823c54a6
[99] Okuma, Y., Liu, K., Wake, H., Zhang, J., Maruo, T., Date, I., Yoshino, T., Ohtsuka, A., Otani, N., Tomura, S., Shima, K., Yamamoto, Y., Yamamoto, H., Takahashi, H. K., Mori, S., & Nishibori, M. (2012). Anti-high mobility group box-1 antibody therapy for traumatic brain injury [Journal Article; Research Support, Non-U.S. Gov't]. Annals of Neurology, 72(3), 373-384. http://doi.org/10.1002/ana.23602
[100] Haruma, J., Teshigawara, K., Hishikawa, T., Wang, D., Liu, K., Wake, H., Mori, S., Takahashi, H. K., Sugiu, K., Date, I., & Nishibori, M. (2016). Anti-high mobility group box-1 (HMGB1) antibody attenuates delayed cerebral vasospasm and brain injury after subarachnoid hemorrhage in rats [Journal Article; Research Support, Non-U.S. Gov't]. Scientific Reports, 6, 37755. http://doi.org/10.1038/srep37755
[101] Fujita, K., Motoki, K., Tagawa, K., Chen, X., Hama, H., Nakajima, K., Homma, H., Tamura, T., Watanabe, H., Katsuno, M., Matsumi, C., Kajikawa, M., Saito, T., Saido, T., Sobue, G., Miyawaki, A., & Okazawa, H. (2016). HMGB1, a pathogenic molecule that induces neurite degeneration via TLR4-MARCKS, is a potential therapeutic target for Alzheimer's disease [Journal Article; Research Support, Non-U.S. Gov't]. Scientific Reports, 6, 31895. http://doi.org/10.1038/srep31895
[102] Angelopoulou, E., Paudel, Y. N., & Piperi, C. (2020). Exploring the role of high-mobility group box 1 (HMGB1) protein in the pathogenesis of Huntington's disease [Journal Article; Research Support, Non-U.S. Gov't; Review]. Journal of Molecular Medicine-Jmm, 98(3), 325-334. http://doi.org/10.1007/s00109-020-01885-z
[103] Ren, Q., Jiang, X., Paudel, Y. N., Gao, X., Gao, D., Zhang, P., Sheng, W., Shang, X., Liu, K., Zhang, X., & Jin, M. (2022). Co-treatment with natural HMGB1 inhibitor Glycyrrhizin exerts neuroprotection and reverses Parkinson's disease like pathology in Zebrafish [Journal Article]. Journal of Ethnopharmacology, 292, 115234. http://doi.org/10.1016/j.jep.2022.115234
[104] Paudel, Y. N., Angelopoulou, E., Piperi, C., Othman, I., & Shaikh, M. F. (2020). Implication of HMGB1 signaling pathways in Amyotrophic lateral sclerosis (ALS): From molecular mechanisms to pre-clinical results [Journal Article; Research Support, Non-U.S. Gov't; Review]. Pharmacological Research, 156, 104792. http://doi.org/10.1016/j.phrs.2020.104792
[105] Kleen, J. K., & Holmes, G. L. (2010). Taming TLR4 may ease seizures [Comment; News]. Nature Medicine, 16(4), 369-370. http://doi.org/10.1038/nm0410-369
[106] Maroso, M., Balosso, S., Ravizza, T., Liu, J., Bianchi, M. E., & Vezzani, A. (2011). Interleukin-1 type 1 receptor/Toll-like receptor signalling in epilepsy: the importance of IL-1beta and high-mobility group box 1 [Journal Article; Research Support, Non-U.S. Gov't]. Journal of Internal Medicine, 270(4), 319-326. http://doi.org/10.1111/j.1365-2796.2011.02431.x
[107] Vezzani, A., Maroso, M., Balosso, S., Sanchez, M. A., & Bartfai, T. (2011). IL-1 receptor/Toll-like receptor signaling in infection, inflammation, stress and neurodegeneration couples hyperexcitability and seizures [Journal Article; Review]. Brain Behavior and Immunity, 25(7), 1281-1289. http://doi.org/10.1016/j.bbi.2011.03.018
[108] Zurolo, E., Iyer, A., Maroso, M., Carbonell, C., Anink, J. J., Ravizza, T., Fluiter, K., Spliet, W. G., van Rijen, P. C., Vezzani, A., & Aronica, E. (2011). Activation of Toll-like receptor, RAGE and HMGB1 signalling in malformations of cortical development [Journal Article; Research Support, Non-U.S. Gov't]. Brain, 134(Pt 4), 1015-1032. http://doi.org/10.1093/brain/awr032
[109] Balosso, S., Liu, J., Bianchi, M. E., & Vezzani, A. (2014). Disulfide-containing high mobility group box-1 promotes N-methyl-D-aspartate receptor function and excitotoxicity by activating Toll-like receptor 4-dependent signaling in hippocampal neurons [Journal Article; Research Support, Non-U.S. Gov't]. Antioxidants & Redox Signaling, 21(12), 1726-1740. http://doi.org/10.1089/ars.2013.5349
[110] Feldman, P., Due, M. R., Ripsch, M. S., Khanna, R., & White, F. A. (2012). The persistent release of HMGB1 contributes to tactile hyperalgesia in a rodent model of neuropathic pain [Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.]. Journal of Neuroinflammation, 9, 180. http://doi.org/10.1186/1742-2094-9-180
[111] Kuang, X., Huang, Y., Gu, H. F., Zu, X. Y., Zou, W. Y., Song, Z. B., & Guo, Q. L. (2012). Effects of intrathecal epigallocatechin gallate, an inhibitor of Toll-like receptor 4, on chronic neuropathic pain in rats [Journal Article]. European Journal of Pharmacology, 676(1-3), 51-56. http://doi.org/10.1016/j.ejphar.2011.11.037
[112] Davaanyam, D., Lee, H., Seol, S. I., Oh, S. A., Kim, S. W., & Lee, J. K. (2023). HMGB1 induces hepcidin upregulation in astrocytes and causes an acute iron surge and subsequent ferroptosis in the postischemic brain [Journal Article; Research Support, Non-U.S. Gov't]. Experimental and Molecular Medicine, 55(11), 2402-2416. http://doi.org/10.1038/s12276-023-01111-z
[113] Liu, L., Dong, Y., Shan, X., Li, L., Xia, B., & Wang, H. (2019). Anti-Depressive Effectiveness of Baicalin In Vitro and In Vivo [Journal Article]. Molecules, 24(2) http://doi.org/10.3390/molecules24020326
[114] Franklin, T. C., Wohleb, E. S., Zhang, Y., Fogaca, M., Hare, B., & Duman, R. S. (2018). Persistent Increase in Microglial RAGE Contributes to Chronic Stress-Induced Priming of Depressive-like Behavior [Journal Article]. Biological Psychiatry, 83(1), 50-60. http://doi.org/10.1016/j.biopsych.2017.06.034
[115] Valdes-Ferrer, S. I., Rosas-Ballina, M., Olofsson, P. S., Lu, B., Dancho, M. E., Ochani, M., Li, J. H., Scheinerman, J. A., Katz, D. A., Levine, Y. A., Hudson, L. K., Yang, H., Pavlov, V. A., Roth, J., Blanc, L., Antoine, D. J., Chavan, S. S., Andersson, U., Diamond, B., & Tracey, K. J. (2013). HMGB1 mediates splenomegaly and expansion of splenic CD11b+ Ly-6C(high) inflammatory monocytes in murine sepsis survivors [Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't]. Journal of Internal Medicine, 274(4), 381-390. http://doi.org/10.1111/joim.12104
[116] Zhu, C., Chen, T., & Liu, B. (2018). Inhibitory effects of miR-25 targeting HMGB1 on macrophage secretion of inflammatory cytokines in sepsis [Journal Article]. Oncology Letters, 16(4), 5027-5033. http://doi.org/10.3892/ol.2018.9308
[117] Hagiwara, S., Iwasaka, H., Hasegawa, A., Koga, H., & Noguchi, T. (2008). Effects of hyperglycemia and insulin therapy on high mobility group box 1 in endotoxin-induced acute lung injury in a rat model [Journal Article]. Critical Care Medicine, 36(8), 2407-2413. http://doi.org/10.1097/CCM.0b013e318180b3ba
[118] Chorny, A., & Delgado, M. (2008). Neuropeptides rescue mice from lethal sepsis by down-regulating secretion of the late-acting inflammatory mediator high mobility group box 1 [Journal Article; Research Support, Non-U.S. Gov't]. American Journal of Pathology, 172(5), 1297-1307. http://doi.org/10.2353/ajpath.2008.070969
[119] Yang, M., Cao, L., Xie, M., Yu, Y., Kang, R., Yang, L., Zhao, M., & Tang, D. (2013). Chloroquine inhibits HMGB1 inflammatory signaling and protects mice from lethal sepsis [Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't]. Biochemical Pharmacology, 86(3), 410-418. http://doi.org/10.1016/j.bcp.2013.05.013
[120] Wang, B., Koga, K., Osuga, Y., Hirata, T., Saito, A., Yoshino, O., Hirota, Y., Harada, M., Takemura, Y., Fujii, T., & Taketani, Y. (2011). High mobility group box 1 (HMGB1) levels in the placenta and in serum in preeclampsia [Journal Article; Research Support, Non-U.S. Gov't]. American Journal of Reproductive Immunology, 66(2), 143-148. http://doi.org/10.1111/j.1600-0897.2010.00975.x
[121] Li, W., Li, J., Ashok, M., Wu, R., Chen, D., Yang, L., Yang, H., Tracey, K. J., Wang, P., Sama, A. E., & Wang, H. (2007). A cardiovascular drug rescues mice from lethal sepsis by selectively attenuating a late-acting proinflammatory mediator, high mobility group box 1 [Journal Article; Research Support, N.I.H., Extramural]. Journal of Immunology, 178(6), 3856-3864. http://doi.org/10.4049/jimmunol.178.6.3856
[122] Nishiike, S., Hiramatsu, T., Shiraishi, M., Ueda, Y., & Tsuchida, H. (2013). Relationship between vascular reactivity and expression of HMGB1 in a rat model of septic aorta [Journal Article]. Journal of Anesthesia, 27(5), 684-692. http://doi.org/10.1007/s00540-013-1584-x
[123] Tang, D., Kang, R., Zeh, H. J., & Lotze, M. T. (2023). The multifunctional protein HMGB1: 50 years of discovery [Journal Article; Review]. Nature Reviews Immunology, 23(12), 824-841. http://doi.org/10.1038/s41577-023-00894-6
[124] Hou, W., Wei, X., Liang, J., Fang, P., Ma, C., Zhang, Q., & Gao, Y. (2021). HMGB1-Induced Hepatocyte Pyroptosis Expanding Inflammatory Responses Contributes to the Pathogenesis of Acute-on-Chronic Liver Failure (ACLF) [Journal Article]. Journal of Inflammation Research, 14, 7295-7313. http://doi.org/10.2147/JIR.S336626
[125] Jube, S., Rivera, Z. S., Bianchi, M. E., Powers, A., Wang, E., Pagano, I., Pass, H. I., Gaudino, G., Carbone, M., & Yang, H. (2012). Cancer cell secretion of the DAMP protein HMGB1 supports progression in malignant mesothelioma [Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't]. Cancer Research, 72(13), 3290-3301. http://doi.org/10.1158/0008-5472.CAN-11-3481
[126] Xue, J., Patergnani, S., Giorgi, C., Suarez, J., Goto, K., Bononi, A., Tanji, M., Novelli, F., Pastorino, S., Xu, R., Caroccia, N., Dogan, A. U., Pass, H. I., Tognon, M., Pinton, P., Gaudino, G., Mak, T. W., Carbone, M., & Yang, H. (2020). Asbestos induces mesothelial cell transformation via HMGB1-driven autophagy [Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.]. Proceedings of the National Academy of Sciences of the United States of America, 117(41), 25543-25552. http://doi.org/10.1073/pnas.2007622117
[127] Mcdonald, K. A., Huang, H., Tohme, S., Loughran, P., Ferrero, K., Billiar, T., & Tsung, A. (2015). Toll-like receptor 4 (TLR4) antagonist eritoran tetrasodium attenuates liver ischemia and reperfusion injury through inhibition of high-mobility group box protein B1 (HMGB1) signaling [Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't]. Molecular Medicine, 20(1), 639-648. http://doi.org/10.2119/molmed.2014.00076
[128] Chen, R., Huang, Y., Quan, J., Liu, J., Wang, H., Billiar, T. R., Lotze, M. T., Zeh, H. J., Kang, R., & Tang, D. (2020). HMGB1 as a potential biomarker and therapeutic target for severe COVID-19 [Journal Article]. Heliyon, 6(12), e05672. http://doi.org/10.1016/j.heliyon.2020.e05672
[129] Kumar S, N. R. M. V. (2020). Morphology, Genome Organization, Replication, and Pathogenesis of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Coronavirus Disease 2019 (COVID-19), 23-31.
[130] Li YG, W. X. L. Q. (2022). GLYCYRRHIZIN REGULATES HIPPOCAMPAL PATHOLOGICAL DAMAGE OF KAINIC ACID-INDUCED SEIZURES IN YOUNG RATS THROUGH HMGB1/TLR4/P-NF-KB PATHWAY. Acta Medica Mediterranea, 4(38), 2475-2479.
Type
Published
Data Availability Statement
All data needed to evaluate the conclusions in the paper are present in the paper. Additional data related to this paper may be requested from the authors.
Issue
Section
License
Copyright (c) 2024 Life Conflux

This work is licensed under a Creative Commons Attribution 4.0 International License.